Metamath Proof Explorer


Theorem strssd

Description: Deduction version of strss . (Contributed by Mario Carneiro, 15-Nov-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses strssd.e
|- E = Slot ( E ` ndx )
strssd.t
|- ( ph -> T e. V )
strssd.f
|- ( ph -> Fun T )
strssd.s
|- ( ph -> S C_ T )
strssd.n
|- ( ph -> <. ( E ` ndx ) , C >. e. S )
Assertion strssd
|- ( ph -> ( E ` T ) = ( E ` S ) )

Proof

Step Hyp Ref Expression
1 strssd.e
 |-  E = Slot ( E ` ndx )
2 strssd.t
 |-  ( ph -> T e. V )
3 strssd.f
 |-  ( ph -> Fun T )
4 strssd.s
 |-  ( ph -> S C_ T )
5 strssd.n
 |-  ( ph -> <. ( E ` ndx ) , C >. e. S )
6 4 5 sseldd
 |-  ( ph -> <. ( E ` ndx ) , C >. e. T )
7 1 2 3 6 strfvd
 |-  ( ph -> C = ( E ` T ) )
8 2 4 ssexd
 |-  ( ph -> S e. _V )
9 funss
 |-  ( S C_ T -> ( Fun T -> Fun S ) )
10 4 3 9 sylc
 |-  ( ph -> Fun S )
11 1 8 10 5 strfvd
 |-  ( ph -> C = ( E ` S ) )
12 7 11 eqtr3d
 |-  ( ph -> ( E ` T ) = ( E ` S ) )