Description: Deduction version of strss . (Contributed by Mario Carneiro, 15-Nov-2014) (Revised by Mario Carneiro, 30-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | strssd.e | |- E = Slot ( E ` ndx ) |
|
strssd.t | |- ( ph -> T e. V ) |
||
strssd.f | |- ( ph -> Fun T ) |
||
strssd.s | |- ( ph -> S C_ T ) |
||
strssd.n | |- ( ph -> <. ( E ` ndx ) , C >. e. S ) |
||
Assertion | strssd | |- ( ph -> ( E ` T ) = ( E ` S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strssd.e | |- E = Slot ( E ` ndx ) |
|
2 | strssd.t | |- ( ph -> T e. V ) |
|
3 | strssd.f | |- ( ph -> Fun T ) |
|
4 | strssd.s | |- ( ph -> S C_ T ) |
|
5 | strssd.n | |- ( ph -> <. ( E ` ndx ) , C >. e. S ) |
|
6 | 4 5 | sseldd | |- ( ph -> <. ( E ` ndx ) , C >. e. T ) |
7 | 1 2 3 6 | strfvd | |- ( ph -> C = ( E ` T ) ) |
8 | 2 4 | ssexd | |- ( ph -> S e. _V ) |
9 | funss | |- ( S C_ T -> ( Fun T -> Fun S ) ) |
|
10 | 4 3 9 | sylc | |- ( ph -> Fun S ) |
11 | 1 8 10 5 | strfvd | |- ( ph -> C = ( E ` S ) ) |
12 | 7 11 | eqtr3d | |- ( ph -> ( E ` T ) = ( E ` S ) ) |