| Step |
Hyp |
Ref |
Expression |
| 1 |
|
strssd.e |
|- E = Slot ( E ` ndx ) |
| 2 |
|
strssd.t |
|- ( ph -> T e. V ) |
| 3 |
|
strssd.f |
|- ( ph -> Fun T ) |
| 4 |
|
strssd.s |
|- ( ph -> S C_ T ) |
| 5 |
|
strssd.n |
|- ( ph -> <. ( E ` ndx ) , C >. e. S ) |
| 6 |
4 5
|
sseldd |
|- ( ph -> <. ( E ` ndx ) , C >. e. T ) |
| 7 |
1 2 3 6
|
strfvd |
|- ( ph -> C = ( E ` T ) ) |
| 8 |
2 4
|
ssexd |
|- ( ph -> S e. _V ) |
| 9 |
|
funss |
|- ( S C_ T -> ( Fun T -> Fun S ) ) |
| 10 |
4 3 9
|
sylc |
|- ( ph -> Fun S ) |
| 11 |
1 8 10 5
|
strfvd |
|- ( ph -> C = ( E ` S ) ) |
| 12 |
7 11
|
eqtr3d |
|- ( ph -> ( E ` T ) = ( E ` S ) ) |