| Step | Hyp | Ref | Expression | 
						
							| 1 |  | struct2grvtx.g |  |-  G = { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } | 
						
							| 2 | 1 | struct2grstr |  |-  G Struct <. ( Base ` ndx ) , ( .ef ` ndx ) >. | 
						
							| 3 | 2 | a1i |  |-  ( ( V e. X /\ E e. Y ) -> G Struct <. ( Base ` ndx ) , ( .ef ` ndx ) >. ) | 
						
							| 4 |  | simpl |  |-  ( ( V e. X /\ E e. Y ) -> V e. X ) | 
						
							| 5 |  | simpr |  |-  ( ( V e. X /\ E e. Y ) -> E e. Y ) | 
						
							| 6 | 1 | eqimss2i |  |-  { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } C_ G | 
						
							| 7 | 6 | a1i |  |-  ( ( V e. X /\ E e. Y ) -> { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } C_ G ) | 
						
							| 8 | 3 4 5 7 | structgrssiedg |  |-  ( ( V e. X /\ E e. Y ) -> ( iEdg ` G ) = E ) |