Step |
Hyp |
Ref |
Expression |
1 |
|
0nelxp |
|- -. (/) e. ( _V X. _V ) |
2 |
|
cnvcnv |
|- `' `' F = ( F i^i ( _V X. _V ) ) |
3 |
|
inss2 |
|- ( F i^i ( _V X. _V ) ) C_ ( _V X. _V ) |
4 |
2 3
|
eqsstri |
|- `' `' F C_ ( _V X. _V ) |
5 |
4
|
sseli |
|- ( (/) e. `' `' F -> (/) e. ( _V X. _V ) ) |
6 |
1 5
|
mto |
|- -. (/) e. `' `' F |
7 |
|
disjsn |
|- ( ( `' `' F i^i { (/) } ) = (/) <-> -. (/) e. `' `' F ) |
8 |
6 7
|
mpbir |
|- ( `' `' F i^i { (/) } ) = (/) |
9 |
|
cnvcnvss |
|- `' `' F C_ F |
10 |
|
reldisj |
|- ( `' `' F C_ F -> ( ( `' `' F i^i { (/) } ) = (/) <-> `' `' F C_ ( F \ { (/) } ) ) ) |
11 |
9 10
|
ax-mp |
|- ( ( `' `' F i^i { (/) } ) = (/) <-> `' `' F C_ ( F \ { (/) } ) ) |
12 |
8 11
|
mpbi |
|- `' `' F C_ ( F \ { (/) } ) |
13 |
12
|
a1i |
|- ( F Struct X -> `' `' F C_ ( F \ { (/) } ) ) |
14 |
|
structn0fun |
|- ( F Struct X -> Fun ( F \ { (/) } ) ) |
15 |
|
funrel |
|- ( Fun ( F \ { (/) } ) -> Rel ( F \ { (/) } ) ) |
16 |
14 15
|
syl |
|- ( F Struct X -> Rel ( F \ { (/) } ) ) |
17 |
|
dfrel2 |
|- ( Rel ( F \ { (/) } ) <-> `' `' ( F \ { (/) } ) = ( F \ { (/) } ) ) |
18 |
16 17
|
sylib |
|- ( F Struct X -> `' `' ( F \ { (/) } ) = ( F \ { (/) } ) ) |
19 |
|
difss |
|- ( F \ { (/) } ) C_ F |
20 |
|
cnvss |
|- ( ( F \ { (/) } ) C_ F -> `' ( F \ { (/) } ) C_ `' F ) |
21 |
|
cnvss |
|- ( `' ( F \ { (/) } ) C_ `' F -> `' `' ( F \ { (/) } ) C_ `' `' F ) |
22 |
19 20 21
|
mp2b |
|- `' `' ( F \ { (/) } ) C_ `' `' F |
23 |
18 22
|
eqsstrrdi |
|- ( F Struct X -> ( F \ { (/) } ) C_ `' `' F ) |
24 |
13 23
|
eqssd |
|- ( F Struct X -> `' `' F = ( F \ { (/) } ) ) |