| Step | Hyp | Ref | Expression | 
						
							| 1 |  | structgrssvtx.g |  |-  ( ph -> G Struct X ) | 
						
							| 2 |  | structgrssvtx.v |  |-  ( ph -> V e. Y ) | 
						
							| 3 |  | structgrssvtx.e |  |-  ( ph -> E e. Z ) | 
						
							| 4 |  | structgrssvtx.s |  |-  ( ph -> { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } C_ G ) | 
						
							| 5 | 1 2 3 4 | structgrssvtxlem |  |-  ( ph -> 2 <_ ( # ` dom G ) ) | 
						
							| 6 |  | opex |  |-  <. ( Base ` ndx ) , V >. e. _V | 
						
							| 7 |  | opex |  |-  <. ( .ef ` ndx ) , E >. e. _V | 
						
							| 8 | 6 7 | prss |  |-  ( ( <. ( Base ` ndx ) , V >. e. G /\ <. ( .ef ` ndx ) , E >. e. G ) <-> { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } C_ G ) | 
						
							| 9 |  | simpr |  |-  ( ( <. ( Base ` ndx ) , V >. e. G /\ <. ( .ef ` ndx ) , E >. e. G ) -> <. ( .ef ` ndx ) , E >. e. G ) | 
						
							| 10 | 8 9 | sylbir |  |-  ( { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } C_ G -> <. ( .ef ` ndx ) , E >. e. G ) | 
						
							| 11 | 4 10 | syl |  |-  ( ph -> <. ( .ef ` ndx ) , E >. e. G ) | 
						
							| 12 | 1 5 3 11 | edgfiedgval |  |-  ( ph -> ( iEdg ` G ) = E ) |