| Step |
Hyp |
Ref |
Expression |
| 1 |
|
structgrssvtx.g |
|- ( ph -> G Struct X ) |
| 2 |
|
structgrssvtx.v |
|- ( ph -> V e. Y ) |
| 3 |
|
structgrssvtx.e |
|- ( ph -> E e. Z ) |
| 4 |
|
structgrssvtx.s |
|- ( ph -> { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } C_ G ) |
| 5 |
1 2 3 4
|
structgrssvtxlem |
|- ( ph -> 2 <_ ( # ` dom G ) ) |
| 6 |
|
opex |
|- <. ( Base ` ndx ) , V >. e. _V |
| 7 |
|
opex |
|- <. ( .ef ` ndx ) , E >. e. _V |
| 8 |
6 7
|
prss |
|- ( ( <. ( Base ` ndx ) , V >. e. G /\ <. ( .ef ` ndx ) , E >. e. G ) <-> { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } C_ G ) |
| 9 |
|
simpl |
|- ( ( <. ( Base ` ndx ) , V >. e. G /\ <. ( .ef ` ndx ) , E >. e. G ) -> <. ( Base ` ndx ) , V >. e. G ) |
| 10 |
8 9
|
sylbir |
|- ( { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } C_ G -> <. ( Base ` ndx ) , V >. e. G ) |
| 11 |
4 10
|
syl |
|- ( ph -> <. ( Base ` ndx ) , V >. e. G ) |
| 12 |
1 5 2 11
|
basvtxval |
|- ( ph -> ( Vtx ` G ) = V ) |