Description: Lemma for structgrssvtx and structgrssiedg . (Contributed by AV, 14-Oct-2020) (Proof shortened by AV, 12-Nov-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | structgrssvtx.g | |- ( ph -> G Struct X ) |
|
structgrssvtx.v | |- ( ph -> V e. Y ) |
||
structgrssvtx.e | |- ( ph -> E e. Z ) |
||
structgrssvtx.s | |- ( ph -> { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } C_ G ) |
||
Assertion | structgrssvtxlem | |- ( ph -> 2 <_ ( # ` dom G ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | structgrssvtx.g | |- ( ph -> G Struct X ) |
|
2 | structgrssvtx.v | |- ( ph -> V e. Y ) |
|
3 | structgrssvtx.e | |- ( ph -> E e. Z ) |
|
4 | structgrssvtx.s | |- ( ph -> { <. ( Base ` ndx ) , V >. , <. ( .ef ` ndx ) , E >. } C_ G ) |
|
5 | fvexd | |- ( ph -> ( Base ` ndx ) e. _V ) |
|
6 | fvexd | |- ( ph -> ( .ef ` ndx ) e. _V ) |
|
7 | structex | |- ( G Struct X -> G e. _V ) |
|
8 | 1 7 | syl | |- ( ph -> G e. _V ) |
9 | slotsbaseefdif | |- ( Base ` ndx ) =/= ( .ef ` ndx ) |
|
10 | 9 | a1i | |- ( ph -> ( Base ` ndx ) =/= ( .ef ` ndx ) ) |
11 | 5 6 2 3 8 10 4 | hashdmpropge2 | |- ( ph -> 2 <_ ( # ` dom G ) ) |