Step |
Hyp |
Ref |
Expression |
1 |
|
structvtxvallem.s |
|- S e. NN |
2 |
|
structvtxvallem.b |
|- ( Base ` ndx ) < S |
3 |
|
structvtxvallem.g |
|- G = { <. ( Base ` ndx ) , V >. , <. S , E >. } |
4 |
3 2 1
|
2strstr1 |
|- G Struct <. ( Base ` ndx ) , S >. |
5 |
|
structn0fun |
|- ( G Struct <. ( Base ` ndx ) , S >. -> Fun ( G \ { (/) } ) ) |
6 |
1 2 3
|
structvtxvallem |
|- ( ( V e. X /\ E e. Y ) -> 2 <_ ( # ` dom G ) ) |
7 |
|
funiedgdmge2val |
|- ( ( Fun ( G \ { (/) } ) /\ 2 <_ ( # ` dom G ) ) -> ( iEdg ` G ) = ( .ef ` G ) ) |
8 |
5 6 7
|
syl2an |
|- ( ( G Struct <. ( Base ` ndx ) , S >. /\ ( V e. X /\ E e. Y ) ) -> ( iEdg ` G ) = ( .ef ` G ) ) |
9 |
4 8
|
mpan |
|- ( ( V e. X /\ E e. Y ) -> ( iEdg ` G ) = ( .ef ` G ) ) |
10 |
9
|
3adant3 |
|- ( ( V e. X /\ E e. Y /\ S =/= ( .ef ` ndx ) ) -> ( iEdg ` G ) = ( .ef ` G ) ) |
11 |
|
prex |
|- { <. ( Base ` ndx ) , V >. , <. S , E >. } e. _V |
12 |
11
|
a1i |
|- ( G = { <. ( Base ` ndx ) , V >. , <. S , E >. } -> { <. ( Base ` ndx ) , V >. , <. S , E >. } e. _V ) |
13 |
3 12
|
eqeltrid |
|- ( G = { <. ( Base ` ndx ) , V >. , <. S , E >. } -> G e. _V ) |
14 |
|
edgfndxid |
|- ( G e. _V -> ( .ef ` G ) = ( G ` ( .ef ` ndx ) ) ) |
15 |
3 13 14
|
mp2b |
|- ( .ef ` G ) = ( G ` ( .ef ` ndx ) ) |
16 |
|
basendxnedgfndx |
|- ( Base ` ndx ) =/= ( .ef ` ndx ) |
17 |
16
|
nesymi |
|- -. ( .ef ` ndx ) = ( Base ` ndx ) |
18 |
17
|
a1i |
|- ( ( V e. X /\ E e. Y /\ S =/= ( .ef ` ndx ) ) -> -. ( .ef ` ndx ) = ( Base ` ndx ) ) |
19 |
|
neneq |
|- ( S =/= ( .ef ` ndx ) -> -. S = ( .ef ` ndx ) ) |
20 |
|
eqcom |
|- ( ( .ef ` ndx ) = S <-> S = ( .ef ` ndx ) ) |
21 |
19 20
|
sylnibr |
|- ( S =/= ( .ef ` ndx ) -> -. ( .ef ` ndx ) = S ) |
22 |
21
|
3ad2ant3 |
|- ( ( V e. X /\ E e. Y /\ S =/= ( .ef ` ndx ) ) -> -. ( .ef ` ndx ) = S ) |
23 |
|
ioran |
|- ( -. ( ( .ef ` ndx ) = ( Base ` ndx ) \/ ( .ef ` ndx ) = S ) <-> ( -. ( .ef ` ndx ) = ( Base ` ndx ) /\ -. ( .ef ` ndx ) = S ) ) |
24 |
18 22 23
|
sylanbrc |
|- ( ( V e. X /\ E e. Y /\ S =/= ( .ef ` ndx ) ) -> -. ( ( .ef ` ndx ) = ( Base ` ndx ) \/ ( .ef ` ndx ) = S ) ) |
25 |
|
fvex |
|- ( .ef ` ndx ) e. _V |
26 |
25
|
elpr |
|- ( ( .ef ` ndx ) e. { ( Base ` ndx ) , S } <-> ( ( .ef ` ndx ) = ( Base ` ndx ) \/ ( .ef ` ndx ) = S ) ) |
27 |
24 26
|
sylnibr |
|- ( ( V e. X /\ E e. Y /\ S =/= ( .ef ` ndx ) ) -> -. ( .ef ` ndx ) e. { ( Base ` ndx ) , S } ) |
28 |
3
|
dmeqi |
|- dom G = dom { <. ( Base ` ndx ) , V >. , <. S , E >. } |
29 |
|
dmpropg |
|- ( ( V e. X /\ E e. Y ) -> dom { <. ( Base ` ndx ) , V >. , <. S , E >. } = { ( Base ` ndx ) , S } ) |
30 |
29
|
3adant3 |
|- ( ( V e. X /\ E e. Y /\ S =/= ( .ef ` ndx ) ) -> dom { <. ( Base ` ndx ) , V >. , <. S , E >. } = { ( Base ` ndx ) , S } ) |
31 |
28 30
|
eqtrid |
|- ( ( V e. X /\ E e. Y /\ S =/= ( .ef ` ndx ) ) -> dom G = { ( Base ` ndx ) , S } ) |
32 |
27 31
|
neleqtrrd |
|- ( ( V e. X /\ E e. Y /\ S =/= ( .ef ` ndx ) ) -> -. ( .ef ` ndx ) e. dom G ) |
33 |
|
ndmfv |
|- ( -. ( .ef ` ndx ) e. dom G -> ( G ` ( .ef ` ndx ) ) = (/) ) |
34 |
32 33
|
syl |
|- ( ( V e. X /\ E e. Y /\ S =/= ( .ef ` ndx ) ) -> ( G ` ( .ef ` ndx ) ) = (/) ) |
35 |
15 34
|
eqtrid |
|- ( ( V e. X /\ E e. Y /\ S =/= ( .ef ` ndx ) ) -> ( .ef ` G ) = (/) ) |
36 |
10 35
|
eqtrd |
|- ( ( V e. X /\ E e. Y /\ S =/= ( .ef ` ndx ) ) -> ( iEdg ` G ) = (/) ) |