Metamath Proof Explorer


Theorem structtousgr

Description: Any (extensible) structure with a base set can be made a simple graph with the set of pairs of elements of the base set regarded as edges. (Contributed by AV, 10-Nov-2021) (Revised by AV, 17-Nov-2021)

Ref Expression
Hypotheses structtousgr.p
|- P = { x e. ~P ( Base ` S ) | ( # ` x ) = 2 }
structtousgr.s
|- ( ph -> S Struct X )
structtousgr.g
|- G = ( S sSet <. ( .ef ` ndx ) , ( _I |` P ) >. )
structtousgr.b
|- ( ph -> ( Base ` ndx ) e. dom S )
Assertion structtousgr
|- ( ph -> G e. USGraph )

Proof

Step Hyp Ref Expression
1 structtousgr.p
 |-  P = { x e. ~P ( Base ` S ) | ( # ` x ) = 2 }
2 structtousgr.s
 |-  ( ph -> S Struct X )
3 structtousgr.g
 |-  G = ( S sSet <. ( .ef ` ndx ) , ( _I |` P ) >. )
4 structtousgr.b
 |-  ( ph -> ( Base ` ndx ) e. dom S )
5 eqid
 |-  ( Base ` S ) = ( Base ` S )
6 eqid
 |-  ( .ef ` ndx ) = ( .ef ` ndx )
7 fvex
 |-  ( Base ` S ) e. _V
8 1 cusgrexilem1
 |-  ( ( Base ` S ) e. _V -> ( _I |` P ) e. _V )
9 7 8 mp1i
 |-  ( ph -> ( _I |` P ) e. _V )
10 1 usgrexilem
 |-  ( ( Base ` S ) e. _V -> ( _I |` P ) : dom ( _I |` P ) -1-1-> { x e. ~P ( Base ` S ) | ( # ` x ) = 2 } )
11 7 10 mp1i
 |-  ( ph -> ( _I |` P ) : dom ( _I |` P ) -1-1-> { x e. ~P ( Base ` S ) | ( # ` x ) = 2 } )
12 5 6 2 4 9 11 usgrstrrepe
 |-  ( ph -> ( S sSet <. ( .ef ` ndx ) , ( _I |` P ) >. ) e. USGraph )
13 3 12 eqeltrid
 |-  ( ph -> G e. USGraph )