| Step |
Hyp |
Ref |
Expression |
| 1 |
|
structvtxvallem.s |
|- S e. NN |
| 2 |
|
structvtxvallem.b |
|- ( Base ` ndx ) < S |
| 3 |
|
structvtxvallem.g |
|- G = { <. ( Base ` ndx ) , V >. , <. S , E >. } |
| 4 |
3 2 1
|
2strstr1 |
|- G Struct <. ( Base ` ndx ) , S >. |
| 5 |
4
|
a1i |
|- ( ( V e. X /\ E e. Y ) -> G Struct <. ( Base ` ndx ) , S >. ) |
| 6 |
1 2 3
|
structvtxvallem |
|- ( ( V e. X /\ E e. Y ) -> 2 <_ ( # ` dom G ) ) |
| 7 |
|
simpl |
|- ( ( V e. X /\ E e. Y ) -> V e. X ) |
| 8 |
|
opex |
|- <. ( Base ` ndx ) , V >. e. _V |
| 9 |
8
|
prid1 |
|- <. ( Base ` ndx ) , V >. e. { <. ( Base ` ndx ) , V >. , <. S , E >. } |
| 10 |
9 3
|
eleqtrri |
|- <. ( Base ` ndx ) , V >. e. G |
| 11 |
10
|
a1i |
|- ( ( V e. X /\ E e. Y ) -> <. ( Base ` ndx ) , V >. e. G ) |
| 12 |
5 6 7 11
|
basvtxval |
|- ( ( V e. X /\ E e. Y ) -> ( Vtx ` G ) = V ) |