Metamath Proof Explorer


Theorem structvtxvallem

Description: Lemma for structvtxval and structiedg0val . (Contributed by AV, 23-Sep-2020) (Revised by AV, 12-Nov-2021)

Ref Expression
Hypotheses structvtxvallem.s
|- S e. NN
structvtxvallem.b
|- ( Base ` ndx ) < S
structvtxvallem.g
|- G = { <. ( Base ` ndx ) , V >. , <. S , E >. }
Assertion structvtxvallem
|- ( ( V e. X /\ E e. Y ) -> 2 <_ ( # ` dom G ) )

Proof

Step Hyp Ref Expression
1 structvtxvallem.s
 |-  S e. NN
2 structvtxvallem.b
 |-  ( Base ` ndx ) < S
3 structvtxvallem.g
 |-  G = { <. ( Base ` ndx ) , V >. , <. S , E >. }
4 fvexd
 |-  ( ( V e. X /\ E e. Y ) -> ( Base ` ndx ) e. _V )
5 1 a1i
 |-  ( ( V e. X /\ E e. Y ) -> S e. NN )
6 simpl
 |-  ( ( V e. X /\ E e. Y ) -> V e. X )
7 simpr
 |-  ( ( V e. X /\ E e. Y ) -> E e. Y )
8 prex
 |-  { <. ( Base ` ndx ) , V >. , <. S , E >. } e. _V
9 3 8 eqeltri
 |-  G e. _V
10 9 a1i
 |-  ( ( V e. X /\ E e. Y ) -> G e. _V )
11 basendxnn
 |-  ( Base ` ndx ) e. NN
12 11 nnrei
 |-  ( Base ` ndx ) e. RR
13 12 2 ltneii
 |-  ( Base ` ndx ) =/= S
14 13 a1i
 |-  ( ( V e. X /\ E e. Y ) -> ( Base ` ndx ) =/= S )
15 3 eqimss2i
 |-  { <. ( Base ` ndx ) , V >. , <. S , E >. } C_ G
16 15 a1i
 |-  ( ( V e. X /\ E e. Y ) -> { <. ( Base ` ndx ) , V >. , <. S , E >. } C_ G )
17 4 5 6 7 10 14 16 hashdmpropge2
 |-  ( ( V e. X /\ E e. Y ) -> 2 <_ ( # ` dom G ) )