| Step |
Hyp |
Ref |
Expression |
| 1 |
|
structvtxvallem.s |
|- S e. NN |
| 2 |
|
structvtxvallem.b |
|- ( Base ` ndx ) < S |
| 3 |
|
structvtxvallem.g |
|- G = { <. ( Base ` ndx ) , V >. , <. S , E >. } |
| 4 |
|
fvexd |
|- ( ( V e. X /\ E e. Y ) -> ( Base ` ndx ) e. _V ) |
| 5 |
1
|
a1i |
|- ( ( V e. X /\ E e. Y ) -> S e. NN ) |
| 6 |
|
simpl |
|- ( ( V e. X /\ E e. Y ) -> V e. X ) |
| 7 |
|
simpr |
|- ( ( V e. X /\ E e. Y ) -> E e. Y ) |
| 8 |
|
prex |
|- { <. ( Base ` ndx ) , V >. , <. S , E >. } e. _V |
| 9 |
3 8
|
eqeltri |
|- G e. _V |
| 10 |
9
|
a1i |
|- ( ( V e. X /\ E e. Y ) -> G e. _V ) |
| 11 |
|
basendxnn |
|- ( Base ` ndx ) e. NN |
| 12 |
11
|
nnrei |
|- ( Base ` ndx ) e. RR |
| 13 |
12 2
|
ltneii |
|- ( Base ` ndx ) =/= S |
| 14 |
13
|
a1i |
|- ( ( V e. X /\ E e. Y ) -> ( Base ` ndx ) =/= S ) |
| 15 |
3
|
eqimss2i |
|- { <. ( Base ` ndx ) , V >. , <. S , E >. } C_ G |
| 16 |
15
|
a1i |
|- ( ( V e. X /\ E e. Y ) -> { <. ( Base ` ndx ) , V >. , <. S , E >. } C_ G ) |
| 17 |
4 5 6 7 10 14 16
|
hashdmpropge2 |
|- ( ( V e. X /\ E e. Y ) -> 2 <_ ( # ` dom G ) ) |