| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sub1cncf.1 |  |-  F = ( x e. CC |-> ( x - A ) ) | 
						
							| 2 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 3 | 2 | subcn |  |-  - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 4 | 3 | a1i |  |-  ( A e. CC -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 5 |  | eqid |  |-  ( x e. CC |-> x ) = ( x e. CC |-> x ) | 
						
							| 6 | 5 | idcncf |  |-  ( x e. CC |-> x ) e. ( CC -cn-> CC ) | 
						
							| 7 | 6 | a1i |  |-  ( A e. CC -> ( x e. CC |-> x ) e. ( CC -cn-> CC ) ) | 
						
							| 8 |  | ssid |  |-  CC C_ CC | 
						
							| 9 |  | cncfmptc |  |-  ( ( A e. CC /\ CC C_ CC /\ CC C_ CC ) -> ( x e. CC |-> A ) e. ( CC -cn-> CC ) ) | 
						
							| 10 | 8 8 9 | mp3an23 |  |-  ( A e. CC -> ( x e. CC |-> A ) e. ( CC -cn-> CC ) ) | 
						
							| 11 | 2 4 7 10 | cncfmpt2f |  |-  ( A e. CC -> ( x e. CC |-> ( x - A ) ) e. ( CC -cn-> CC ) ) | 
						
							| 12 | 1 11 | eqeltrid |  |-  ( A e. CC -> F e. ( CC -cn-> CC ) ) |