Step |
Hyp |
Ref |
Expression |
1 |
|
sub1cncfd.1 |
|- ( ph -> A e. CC ) |
2 |
|
sub1cncfd.2 |
|- F = ( x e. CC |-> ( x - A ) ) |
3 |
|
ssid |
|- CC C_ CC |
4 |
|
cncfmptid |
|- ( ( CC C_ CC /\ CC C_ CC ) -> ( x e. CC |-> x ) e. ( CC -cn-> CC ) ) |
5 |
3 3 4
|
mp2an |
|- ( x e. CC |-> x ) e. ( CC -cn-> CC ) |
6 |
5
|
a1i |
|- ( ph -> ( x e. CC |-> x ) e. ( CC -cn-> CC ) ) |
7 |
3
|
a1i |
|- ( ph -> CC C_ CC ) |
8 |
|
cncfmptc |
|- ( ( A e. CC /\ CC C_ CC /\ CC C_ CC ) -> ( x e. CC |-> A ) e. ( CC -cn-> CC ) ) |
9 |
1 7 7 8
|
syl3anc |
|- ( ph -> ( x e. CC |-> A ) e. ( CC -cn-> CC ) ) |
10 |
6 9
|
subcncf |
|- ( ph -> ( x e. CC |-> ( x - A ) ) e. ( CC -cn-> CC ) ) |
11 |
2 10
|
eqeltrid |
|- ( ph -> F e. ( CC -cn-> CC ) ) |