| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sub2cncfd.1 |  |-  ( ph -> A e. CC ) | 
						
							| 2 |  | sub2cncfd.2 |  |-  F = ( x e. CC |-> ( A - x ) ) | 
						
							| 3 |  | ssid |  |-  CC C_ CC | 
						
							| 4 | 3 | a1i |  |-  ( ph -> CC C_ CC ) | 
						
							| 5 |  | cncfmptc |  |-  ( ( A e. CC /\ CC C_ CC /\ CC C_ CC ) -> ( x e. CC |-> A ) e. ( CC -cn-> CC ) ) | 
						
							| 6 | 1 4 4 5 | syl3anc |  |-  ( ph -> ( x e. CC |-> A ) e. ( CC -cn-> CC ) ) | 
						
							| 7 |  | cncfmptid |  |-  ( ( CC C_ CC /\ CC C_ CC ) -> ( x e. CC |-> x ) e. ( CC -cn-> CC ) ) | 
						
							| 8 | 3 3 7 | mp2an |  |-  ( x e. CC |-> x ) e. ( CC -cn-> CC ) | 
						
							| 9 | 8 | a1i |  |-  ( ph -> ( x e. CC |-> x ) e. ( CC -cn-> CC ) ) | 
						
							| 10 | 6 9 | subcncf |  |-  ( ph -> ( x e. CC |-> ( A - x ) ) e. ( CC -cn-> CC ) ) | 
						
							| 11 | 2 10 | eqeltrid |  |-  ( ph -> F e. ( CC -cn-> CC ) ) |