Step |
Hyp |
Ref |
Expression |
1 |
|
addcom |
|- ( ( B e. CC /\ C e. CC ) -> ( B + C ) = ( C + B ) ) |
2 |
1
|
ad2ant2lr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B + C ) = ( C + B ) ) |
3 |
2
|
oveq2d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + D ) - ( B + C ) ) = ( ( A + D ) - ( C + B ) ) ) |
4 |
|
subadd4 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A - B ) - ( C - D ) ) = ( ( A + D ) - ( B + C ) ) ) |
5 |
|
subadd4 |
|- ( ( ( A e. CC /\ C e. CC ) /\ ( B e. CC /\ D e. CC ) ) -> ( ( A - C ) - ( B - D ) ) = ( ( A + D ) - ( C + B ) ) ) |
6 |
5
|
an4s |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A - C ) - ( B - D ) ) = ( ( A + D ) - ( C + B ) ) ) |
7 |
3 4 6
|
3eqtr4d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A - B ) - ( C - D ) ) = ( ( A - C ) - ( B - D ) ) ) |