Description: Commutative/associative law for addition and subtraction. (Contributed by NM, 1-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subadd23 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) + C ) = ( A + ( C - B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addsub | |- ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A + C ) - B ) = ( ( A - B ) + C ) ) |
|
| 2 | addsubass | |- ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A + C ) - B ) = ( A + ( C - B ) ) ) |
|
| 3 | 1 2 | eqtr3d | |- ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A - B ) + C ) = ( A + ( C - B ) ) ) |
| 4 | 3 | 3com23 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) + C ) = ( A + ( C - B ) ) ) |