Step |
Hyp |
Ref |
Expression |
1 |
|
subaddeqd.a |
|- ( ph -> A e. CC ) |
2 |
|
subaddeqd.b |
|- ( ph -> B e. CC ) |
3 |
|
subaddeqd.c |
|- ( ph -> C e. CC ) |
4 |
|
subaddeqd.d |
|- ( ph -> D e. CC ) |
5 |
|
subaddeqd.1 |
|- ( ph -> ( A + B ) = ( C + D ) ) |
6 |
5
|
oveq1d |
|- ( ph -> ( ( A + B ) - ( D + B ) ) = ( ( C + D ) - ( D + B ) ) ) |
7 |
3 4
|
addcomd |
|- ( ph -> ( C + D ) = ( D + C ) ) |
8 |
7
|
oveq1d |
|- ( ph -> ( ( C + D ) - ( D + B ) ) = ( ( D + C ) - ( D + B ) ) ) |
9 |
6 8
|
eqtrd |
|- ( ph -> ( ( A + B ) - ( D + B ) ) = ( ( D + C ) - ( D + B ) ) ) |
10 |
1 4 2
|
pnpcan2d |
|- ( ph -> ( ( A + B ) - ( D + B ) ) = ( A - D ) ) |
11 |
4 3 2
|
pnpcand |
|- ( ph -> ( ( D + C ) - ( D + B ) ) = ( C - B ) ) |
12 |
9 10 11
|
3eqtr3d |
|- ( ph -> ( A - D ) = ( C - B ) ) |