Metamath Proof Explorer


Theorem subaddrii

Description: Relationship between subtraction and addition. (Contributed by NM, 16-Dec-2006)

Ref Expression
Hypotheses negidi.1
|- A e. CC
pncan3i.2
|- B e. CC
subadd.3
|- C e. CC
subaddri.4
|- ( B + C ) = A
Assertion subaddrii
|- ( A - B ) = C

Proof

Step Hyp Ref Expression
1 negidi.1
 |-  A e. CC
2 pncan3i.2
 |-  B e. CC
3 subadd.3
 |-  C e. CC
4 subaddri.4
 |-  ( B + C ) = A
5 1 2 3 subaddi
 |-  ( ( A - B ) = C <-> ( B + C ) = A )
6 4 5 mpbir
 |-  ( A - B ) = C