Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 22-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | negidd.1 | |- ( ph -> A e. CC ) |
|
pncand.2 | |- ( ph -> B e. CC ) |
||
subaddd.3 | |- ( ph -> C e. CC ) |
||
subcan2d.4 | |- ( ph -> ( A - C ) = ( B - C ) ) |
||
Assertion | subcan2d | |- ( ph -> A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | |- ( ph -> A e. CC ) |
|
2 | pncand.2 | |- ( ph -> B e. CC ) |
|
3 | subaddd.3 | |- ( ph -> C e. CC ) |
|
4 | subcan2d.4 | |- ( ph -> ( A - C ) = ( B - C ) ) |
|
5 | subcan2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - C ) = ( B - C ) <-> A = B ) ) |
|
6 | 1 2 3 5 | syl3anc | |- ( ph -> ( ( A - C ) = ( B - C ) <-> A = B ) ) |
7 | 4 6 | mpbid | |- ( ph -> A = B ) |