Description: Cancellation law for subtraction. Deduction form of subcan . Generalization of subcand . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | |- ( ph -> A e. CC ) |
|
| pncand.2 | |- ( ph -> B e. CC ) |
||
| subaddd.3 | |- ( ph -> C e. CC ) |
||
| Assertion | subcanad | |- ( ph -> ( ( A - B ) = ( A - C ) <-> B = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | |- ( ph -> A e. CC ) |
|
| 2 | pncand.2 | |- ( ph -> B e. CC ) |
|
| 3 | subaddd.3 | |- ( ph -> C e. CC ) |
|
| 4 | subcan | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) = ( A - C ) <-> B = C ) ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> ( ( A - B ) = ( A - C ) <-> B = C ) ) |