Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | |- ( ph -> A e. CC ) | |
| pncand.2 | |- ( ph -> B e. CC ) | ||
| subaddd.3 | |- ( ph -> C e. CC ) | ||
| subcand.4 | |- ( ph -> ( A - B ) = ( A - C ) ) | ||
| Assertion | subcand | |- ( ph -> B = C ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | negidd.1 | |- ( ph -> A e. CC ) | |
| 2 | pncand.2 | |- ( ph -> B e. CC ) | |
| 3 | subaddd.3 | |- ( ph -> C e. CC ) | |
| 4 | subcand.4 | |- ( ph -> ( A - B ) = ( A - C ) ) | |
| 5 | subcan | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) = ( A - C ) <-> B = C ) ) | |
| 6 | 1 2 3 5 | syl3anc | |- ( ph -> ( ( A - B ) = ( A - C ) <-> B = C ) ) | 
| 7 | 4 6 | mpbid | |- ( ph -> B = C ) |