Description: A subcategory is a category. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subccat.1 | |- D = ( C |`cat J ) | |
| subccat.j | |- ( ph -> J e. ( Subcat ` C ) ) | ||
| Assertion | subccat | |- ( ph -> D e. Cat ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | subccat.1 | |- D = ( C |`cat J ) | |
| 2 | subccat.j | |- ( ph -> J e. ( Subcat ` C ) ) | |
| 3 | eqidd | |- ( ph -> dom dom J = dom dom J ) | |
| 4 | 2 3 | subcfn | |- ( ph -> J Fn ( dom dom J X. dom dom J ) ) | 
| 5 | eqid | |- ( Id ` C ) = ( Id ` C ) | |
| 6 | 1 2 4 5 | subccatid | |- ( ph -> ( D e. Cat /\ ( Id ` D ) = ( x e. dom dom J |-> ( ( Id ` C ) ` x ) ) ) ) | 
| 7 | 6 | simpld | |- ( ph -> D e. Cat ) |