Description: An element in the set of subcategories is a binary function. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subcixp.1 | |- ( ph -> J e. ( Subcat ` C ) ) | |
| subcfn.2 | |- ( ph -> S = dom dom J ) | ||
| Assertion | subcfn | |- ( ph -> J Fn ( S X. S ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | subcixp.1 | |- ( ph -> J e. ( Subcat ` C ) ) | |
| 2 | subcfn.2 | |- ( ph -> S = dom dom J ) | |
| 3 | eqid | |- ( Homf ` C ) = ( Homf ` C ) | |
| 4 | 1 3 | subcssc | |- ( ph -> J C_cat ( Homf ` C ) ) | 
| 5 | 4 2 | sscfn1 | |- ( ph -> J Fn ( S X. S ) ) |