| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subccat.1 |  |-  D = ( C |`cat J ) | 
						
							| 2 |  | subccat.j |  |-  ( ph -> J e. ( Subcat ` C ) ) | 
						
							| 3 |  | subccatid.1 |  |-  ( ph -> J Fn ( S X. S ) ) | 
						
							| 4 |  | subccatid.2 |  |-  .1. = ( Id ` C ) | 
						
							| 5 |  | subcid.x |  |-  ( ph -> X e. S ) | 
						
							| 6 | 1 2 3 4 | subccatid |  |-  ( ph -> ( D e. Cat /\ ( Id ` D ) = ( x e. S |-> ( .1. ` x ) ) ) ) | 
						
							| 7 | 6 | simprd |  |-  ( ph -> ( Id ` D ) = ( x e. S |-> ( .1. ` x ) ) ) | 
						
							| 8 |  | simpr |  |-  ( ( ph /\ x = X ) -> x = X ) | 
						
							| 9 | 8 | fveq2d |  |-  ( ( ph /\ x = X ) -> ( .1. ` x ) = ( .1. ` X ) ) | 
						
							| 10 |  | fvexd |  |-  ( ph -> ( .1. ` X ) e. _V ) | 
						
							| 11 | 7 9 5 10 | fvmptd |  |-  ( ph -> ( ( Id ` D ) ` X ) = ( .1. ` X ) ) | 
						
							| 12 | 11 | eqcomd |  |-  ( ph -> ( .1. ` X ) = ( ( Id ` D ) ` X ) ) |