Description: Closure law for subtraction. (Contributed by NM, 10-May-1999) (Revised by Mario Carneiro, 21-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | subcl | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subval | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) = ( iota_ x e. CC ( B + x ) = A ) ) |
|
2 | negeu | |- ( ( B e. CC /\ A e. CC ) -> E! x e. CC ( B + x ) = A ) |
|
3 | 2 | ancoms | |- ( ( A e. CC /\ B e. CC ) -> E! x e. CC ( B + x ) = A ) |
4 | riotacl | |- ( E! x e. CC ( B + x ) = A -> ( iota_ x e. CC ( B + x ) = A ) e. CC ) |
|
5 | 3 4 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( iota_ x e. CC ( B + x ) = A ) e. CC ) |
6 | 1 5 | eqeltrd | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |