Step |
Hyp |
Ref |
Expression |
1 |
|
subgabl.h |
|- H = ( G |`s S ) |
2 |
|
eqidd |
|- ( ( G e. CMnd /\ H e. Mnd ) -> ( Base ` H ) = ( Base ` H ) ) |
3 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
4 |
|
eqid |
|- ( 0g ` H ) = ( 0g ` H ) |
5 |
3 4
|
mndidcl |
|- ( H e. Mnd -> ( 0g ` H ) e. ( Base ` H ) ) |
6 |
|
n0i |
|- ( ( 0g ` H ) e. ( Base ` H ) -> -. ( Base ` H ) = (/) ) |
7 |
5 6
|
syl |
|- ( H e. Mnd -> -. ( Base ` H ) = (/) ) |
8 |
|
reldmress |
|- Rel dom |`s |
9 |
8
|
ovprc2 |
|- ( -. S e. _V -> ( G |`s S ) = (/) ) |
10 |
1 9
|
eqtrid |
|- ( -. S e. _V -> H = (/) ) |
11 |
10
|
fveq2d |
|- ( -. S e. _V -> ( Base ` H ) = ( Base ` (/) ) ) |
12 |
|
base0 |
|- (/) = ( Base ` (/) ) |
13 |
11 12
|
eqtr4di |
|- ( -. S e. _V -> ( Base ` H ) = (/) ) |
14 |
7 13
|
nsyl2 |
|- ( H e. Mnd -> S e. _V ) |
15 |
14
|
adantl |
|- ( ( G e. CMnd /\ H e. Mnd ) -> S e. _V ) |
16 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
17 |
1 16
|
ressplusg |
|- ( S e. _V -> ( +g ` G ) = ( +g ` H ) ) |
18 |
15 17
|
syl |
|- ( ( G e. CMnd /\ H e. Mnd ) -> ( +g ` G ) = ( +g ` H ) ) |
19 |
|
simpr |
|- ( ( G e. CMnd /\ H e. Mnd ) -> H e. Mnd ) |
20 |
|
simpl |
|- ( ( G e. CMnd /\ H e. Mnd ) -> G e. CMnd ) |
21 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
22 |
1 21
|
ressbasss |
|- ( Base ` H ) C_ ( Base ` G ) |
23 |
22
|
sseli |
|- ( x e. ( Base ` H ) -> x e. ( Base ` G ) ) |
24 |
22
|
sseli |
|- ( y e. ( Base ` H ) -> y e. ( Base ` G ) ) |
25 |
21 16
|
cmncom |
|- ( ( G e. CMnd /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
26 |
20 23 24 25
|
syl3an |
|- ( ( ( G e. CMnd /\ H e. Mnd ) /\ x e. ( Base ` H ) /\ y e. ( Base ` H ) ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
27 |
2 18 19 26
|
iscmnd |
|- ( ( G e. CMnd /\ H e. Mnd ) -> H e. CMnd ) |