| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subcncff.f |  |-  ( ph -> F e. ( X -cn-> CC ) ) | 
						
							| 2 |  | subcncff.g |  |-  ( ph -> G e. ( X -cn-> CC ) ) | 
						
							| 3 |  | cncfrss |  |-  ( F e. ( X -cn-> CC ) -> X C_ CC ) | 
						
							| 4 |  | cnex |  |-  CC e. _V | 
						
							| 5 | 4 | ssex |  |-  ( X C_ CC -> X e. _V ) | 
						
							| 6 | 1 3 5 | 3syl |  |-  ( ph -> X e. _V ) | 
						
							| 7 |  | cncff |  |-  ( F e. ( X -cn-> CC ) -> F : X --> CC ) | 
						
							| 8 | 1 7 | syl |  |-  ( ph -> F : X --> CC ) | 
						
							| 9 | 8 | ffvelcdmda |  |-  ( ( ph /\ x e. X ) -> ( F ` x ) e. CC ) | 
						
							| 10 |  | cncff |  |-  ( G e. ( X -cn-> CC ) -> G : X --> CC ) | 
						
							| 11 | 2 10 | syl |  |-  ( ph -> G : X --> CC ) | 
						
							| 12 | 11 | ffvelcdmda |  |-  ( ( ph /\ x e. X ) -> ( G ` x ) e. CC ) | 
						
							| 13 | 8 | feqmptd |  |-  ( ph -> F = ( x e. X |-> ( F ` x ) ) ) | 
						
							| 14 | 11 | feqmptd |  |-  ( ph -> G = ( x e. X |-> ( G ` x ) ) ) | 
						
							| 15 | 6 9 12 13 14 | offval2 |  |-  ( ph -> ( F oF - G ) = ( x e. X |-> ( ( F ` x ) - ( G ` x ) ) ) ) | 
						
							| 16 | 13 1 | eqeltrrd |  |-  ( ph -> ( x e. X |-> ( F ` x ) ) e. ( X -cn-> CC ) ) | 
						
							| 17 | 14 2 | eqeltrrd |  |-  ( ph -> ( x e. X |-> ( G ` x ) ) e. ( X -cn-> CC ) ) | 
						
							| 18 | 16 17 | subcncf |  |-  ( ph -> ( x e. X |-> ( ( F ` x ) - ( G ` x ) ) ) e. ( X -cn-> CC ) ) | 
						
							| 19 | 15 18 | eqeltrd |  |-  ( ph -> ( F oF - G ) e. ( X -cn-> CC ) ) |