Metamath Proof Explorer


Theorem subcss1

Description: The objects of a subcategory are a subset of the objects of the original. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses subcss1.1
|- ( ph -> J e. ( Subcat ` C ) )
subcss1.2
|- ( ph -> J Fn ( S X. S ) )
subcss1.b
|- B = ( Base ` C )
Assertion subcss1
|- ( ph -> S C_ B )

Proof

Step Hyp Ref Expression
1 subcss1.1
 |-  ( ph -> J e. ( Subcat ` C ) )
2 subcss1.2
 |-  ( ph -> J Fn ( S X. S ) )
3 subcss1.b
 |-  B = ( Base ` C )
4 eqid
 |-  ( Homf ` C ) = ( Homf ` C )
5 4 3 homffn
 |-  ( Homf ` C ) Fn ( B X. B )
6 5 a1i
 |-  ( ph -> ( Homf ` C ) Fn ( B X. B ) )
7 1 4 subcssc
 |-  ( ph -> J C_cat ( Homf ` C ) )
8 2 6 7 ssc1
 |-  ( ph -> S C_ B )