Metamath Proof Explorer


Theorem subdi

Description: Distribution of multiplication over subtraction. Theorem I.5 of Apostol p. 18. (Contributed by NM, 18-Nov-2004)

Ref Expression
Assertion subdi
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. ( B - C ) ) = ( ( A x. B ) - ( A x. C ) ) )

Proof

Step Hyp Ref Expression
1 simp1
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> A e. CC )
2 simp3
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> C e. CC )
3 subcl
 |-  ( ( B e. CC /\ C e. CC ) -> ( B - C ) e. CC )
4 3 3adant1
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B - C ) e. CC )
5 1 2 4 adddid
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. ( C + ( B - C ) ) ) = ( ( A x. C ) + ( A x. ( B - C ) ) ) )
6 pncan3
 |-  ( ( C e. CC /\ B e. CC ) -> ( C + ( B - C ) ) = B )
7 6 ancoms
 |-  ( ( B e. CC /\ C e. CC ) -> ( C + ( B - C ) ) = B )
8 7 3adant1
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( C + ( B - C ) ) = B )
9 8 oveq2d
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. ( C + ( B - C ) ) ) = ( A x. B ) )
10 5 9 eqtr3d
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. C ) + ( A x. ( B - C ) ) ) = ( A x. B ) )
11 mulcl
 |-  ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC )
12 11 3adant3
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. B ) e. CC )
13 mulcl
 |-  ( ( A e. CC /\ C e. CC ) -> ( A x. C ) e. CC )
14 13 3adant2
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. C ) e. CC )
15 mulcl
 |-  ( ( A e. CC /\ ( B - C ) e. CC ) -> ( A x. ( B - C ) ) e. CC )
16 3 15 sylan2
 |-  ( ( A e. CC /\ ( B e. CC /\ C e. CC ) ) -> ( A x. ( B - C ) ) e. CC )
17 16 3impb
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. ( B - C ) ) e. CC )
18 12 14 17 subaddd
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A x. B ) - ( A x. C ) ) = ( A x. ( B - C ) ) <-> ( ( A x. C ) + ( A x. ( B - C ) ) ) = ( A x. B ) ) )
19 10 18 mpbird
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) - ( A x. C ) ) = ( A x. ( B - C ) ) )
20 19 eqcomd
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. ( B - C ) ) = ( ( A x. B ) - ( A x. C ) ) )