Step |
Hyp |
Ref |
Expression |
1 |
|
subdi |
|- ( ( C e. CC /\ A e. CC /\ B e. CC ) -> ( C x. ( A - B ) ) = ( ( C x. A ) - ( C x. B ) ) ) |
2 |
1
|
3coml |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( C x. ( A - B ) ) = ( ( C x. A ) - ( C x. B ) ) ) |
3 |
|
subcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
4 |
|
mulcom |
|- ( ( ( A - B ) e. CC /\ C e. CC ) -> ( ( A - B ) x. C ) = ( C x. ( A - B ) ) ) |
5 |
3 4
|
stoic3 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) x. C ) = ( C x. ( A - B ) ) ) |
6 |
|
mulcom |
|- ( ( A e. CC /\ C e. CC ) -> ( A x. C ) = ( C x. A ) ) |
7 |
6
|
3adant2 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. C ) = ( C x. A ) ) |
8 |
|
mulcom |
|- ( ( B e. CC /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) |
9 |
8
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) |
10 |
7 9
|
oveq12d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. C ) - ( B x. C ) ) = ( ( C x. A ) - ( C x. B ) ) ) |
11 |
2 5 10
|
3eqtr4d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) x. C ) = ( ( A x. C ) - ( B x. C ) ) ) |