Step |
Hyp |
Ref |
Expression |
1 |
|
simp3l |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> C e. CC ) |
2 |
|
simp2 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> B e. CC ) |
3 |
1 2
|
mulcld |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( C x. B ) e. CC ) |
4 |
|
divsubdir |
|- ( ( A e. CC /\ ( C x. B ) e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A - ( C x. B ) ) / C ) = ( ( A / C ) - ( ( C x. B ) / C ) ) ) |
5 |
3 4
|
syld3an2 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A - ( C x. B ) ) / C ) = ( ( A / C ) - ( ( C x. B ) / C ) ) ) |
6 |
|
simprl |
|- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> C e. CC ) |
7 |
|
simpl |
|- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> B e. CC ) |
8 |
|
simpr |
|- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( C e. CC /\ C =/= 0 ) ) |
9 |
|
div23 |
|- ( ( C e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. B ) / C ) = ( ( C / C ) x. B ) ) |
10 |
6 7 8 9
|
syl3anc |
|- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. B ) / C ) = ( ( C / C ) x. B ) ) |
11 |
|
divid |
|- ( ( C e. CC /\ C =/= 0 ) -> ( C / C ) = 1 ) |
12 |
11
|
oveq1d |
|- ( ( C e. CC /\ C =/= 0 ) -> ( ( C / C ) x. B ) = ( 1 x. B ) ) |
13 |
|
mulid2 |
|- ( B e. CC -> ( 1 x. B ) = B ) |
14 |
12 13
|
sylan9eqr |
|- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C / C ) x. B ) = B ) |
15 |
10 14
|
eqtrd |
|- ( ( B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. B ) / C ) = B ) |
16 |
15
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( C x. B ) / C ) = B ) |
17 |
16
|
oveq2d |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A / C ) - ( ( C x. B ) / C ) ) = ( ( A / C ) - B ) ) |
18 |
5 17
|
eqtrd |
|- ( ( A e. CC /\ B e. CC /\ ( C e. CC /\ C =/= 0 ) ) -> ( ( A - ( C x. B ) ) / C ) = ( ( A / C ) - B ) ) |