Description: If the difference between two numbers is zero, they are equal. (Contributed by NM, 16-Nov-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | subeq0 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) = 0 <-> A = B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subid | |- ( B e. CC -> ( B - B ) = 0 ) |
|
2 | 1 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( B - B ) = 0 ) |
3 | 2 | eqeq2d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) = ( B - B ) <-> ( A - B ) = 0 ) ) |
4 | subcan2 | |- ( ( A e. CC /\ B e. CC /\ B e. CC ) -> ( ( A - B ) = ( B - B ) <-> A = B ) ) |
|
5 | 4 | 3anidm23 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) = ( B - B ) <-> A = B ) ) |
6 | 3 5 | bitr3d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) = 0 <-> A = B ) ) |