Description: The difference of two complex numbers is zero iff they are equal. Deduction form of subeq0 . Generalization of subeq0d . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | |- ( ph -> A e. CC ) |
|
| pncand.2 | |- ( ph -> B e. CC ) |
||
| Assertion | subeq0ad | |- ( ph -> ( ( A - B ) = 0 <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | |- ( ph -> A e. CC ) |
|
| 2 | pncand.2 | |- ( ph -> B e. CC ) |
|
| 3 | subeq0 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) = 0 <-> A = B ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( ( A - B ) = 0 <-> A = B ) ) |