Metamath Proof Explorer


Theorem subeq0ad

Description: The difference of two complex numbers is zero iff they are equal. Deduction form of subeq0 . Generalization of subeq0d . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses negidd.1
|- ( ph -> A e. CC )
pncand.2
|- ( ph -> B e. CC )
Assertion subeq0ad
|- ( ph -> ( ( A - B ) = 0 <-> A = B ) )

Proof

Step Hyp Ref Expression
1 negidd.1
 |-  ( ph -> A e. CC )
2 pncand.2
 |-  ( ph -> B e. CC )
3 subeq0
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) = 0 <-> A = B ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( ( A - B ) = 0 <-> A = B ) )