Description: If two complex numbers are equal, their difference is zero. Consequence of subeq0ad . Converse of subeq0d . Contrapositive of subne0ad . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subeq0bd.1 | |- ( ph -> A e. CC ) |
|
| subeq0bd.2 | |- ( ph -> A = B ) |
||
| Assertion | subeq0bd | |- ( ph -> ( A - B ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subeq0bd.1 | |- ( ph -> A e. CC ) |
|
| 2 | subeq0bd.2 | |- ( ph -> A = B ) |
|
| 3 | 2 1 | eqeltrrd | |- ( ph -> B e. CC ) |
| 4 | 1 3 | subeq0ad | |- ( ph -> ( ( A - B ) = 0 <-> A = B ) ) |
| 5 | 2 4 | mpbird | |- ( ph -> ( A - B ) = 0 ) |