Description: If the difference between two numbers is zero, they are equal. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | |- ( ph -> A e. CC ) |
|
| pncand.2 | |- ( ph -> B e. CC ) |
||
| subeq0d.3 | |- ( ph -> ( A - B ) = 0 ) |
||
| Assertion | subeq0d | |- ( ph -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | |- ( ph -> A e. CC ) |
|
| 2 | pncand.2 | |- ( ph -> B e. CC ) |
|
| 3 | subeq0d.3 | |- ( ph -> ( A - B ) = 0 ) |
|
| 4 | subeq0 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) = 0 <-> A = B ) ) |
|
| 5 | 1 2 4 | syl2anc | |- ( ph -> ( ( A - B ) = 0 <-> A = B ) ) |
| 6 | 3 5 | mpbid | |- ( ph -> A = B ) |