Metamath Proof Explorer


Theorem subeq0i

Description: If the difference between two numbers is zero, they are equal. (Contributed by NM, 8-May-1999)

Ref Expression
Hypotheses negidi.1
|- A e. CC
pncan3i.2
|- B e. CC
Assertion subeq0i
|- ( ( A - B ) = 0 <-> A = B )

Proof

Step Hyp Ref Expression
1 negidi.1
 |-  A e. CC
2 pncan3i.2
 |-  B e. CC
3 subeq0
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) = 0 <-> A = B ) )
4 1 2 3 mp2an
 |-  ( ( A - B ) = 0 <-> A = B )