Description: If the difference between two numbers is zero, they are equal. (Contributed by NM, 8-May-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | negidi.1 | |- A e. CC |
|
pncan3i.2 | |- B e. CC |
||
Assertion | subeq0i | |- ( ( A - B ) = 0 <-> A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidi.1 | |- A e. CC |
|
2 | pncan3i.2 | |- B e. CC |
|
3 | subeq0 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) = 0 <-> A = B ) ) |
|
4 | 1 2 3 | mp2an | |- ( ( A - B ) = 0 <-> A = B ) |