Metamath Proof Explorer


Theorem subeqxfrd

Description: Transfer two terms of a subtraction in an equality. (Contributed by Thierry Arnoux, 2-Feb-2020)

Ref Expression
Hypotheses subeqxfrd.a
|- ( ph -> A e. CC )
subeqxfrd.b
|- ( ph -> B e. CC )
subeqxfrd.c
|- ( ph -> C e. CC )
subeqxfrd.d
|- ( ph -> D e. CC )
subeqxfrd.1
|- ( ph -> ( A - B ) = ( C - D ) )
Assertion subeqxfrd
|- ( ph -> ( A - C ) = ( B - D ) )

Proof

Step Hyp Ref Expression
1 subeqxfrd.a
 |-  ( ph -> A e. CC )
2 subeqxfrd.b
 |-  ( ph -> B e. CC )
3 subeqxfrd.c
 |-  ( ph -> C e. CC )
4 subeqxfrd.d
 |-  ( ph -> D e. CC )
5 subeqxfrd.1
 |-  ( ph -> ( A - B ) = ( C - D ) )
6 5 oveq1d
 |-  ( ph -> ( ( A - B ) + ( B - C ) ) = ( ( C - D ) + ( B - C ) ) )
7 1 2 3 npncand
 |-  ( ph -> ( ( A - B ) + ( B - C ) ) = ( A - C ) )
8 3 4 2 npncan3d
 |-  ( ph -> ( ( C - D ) + ( B - C ) ) = ( B - D ) )
9 6 7 8 3eqtr3d
 |-  ( ph -> ( A - C ) = ( B - D ) )