Description: The subfactorial at zero. (Contributed by Mario Carneiro, 19-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | derang.d | |- D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) |
|
subfac.n | |- S = ( n e. NN0 |-> ( D ` ( 1 ... n ) ) ) |
||
Assertion | subfac0 | |- ( S ` 0 ) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | derang.d | |- D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) |
|
2 | subfac.n | |- S = ( n e. NN0 |-> ( D ` ( 1 ... n ) ) ) |
|
3 | 0nn0 | |- 0 e. NN0 |
|
4 | 1 2 | subfacval | |- ( 0 e. NN0 -> ( S ` 0 ) = ( D ` ( 1 ... 0 ) ) ) |
5 | 3 4 | ax-mp | |- ( S ` 0 ) = ( D ` ( 1 ... 0 ) ) |
6 | fz10 | |- ( 1 ... 0 ) = (/) |
|
7 | 6 | fveq2i | |- ( D ` ( 1 ... 0 ) ) = ( D ` (/) ) |
8 | 1 | derang0 | |- ( D ` (/) ) = 1 |
9 | 5 7 8 | 3eqtri | |- ( S ` 0 ) = 1 |