Step |
Hyp |
Ref |
Expression |
1 |
|
derang.d |
|- D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) |
2 |
|
subfac.n |
|- S = ( n e. NN0 |-> ( D ` ( 1 ... n ) ) ) |
3 |
|
1nn0 |
|- 1 e. NN0 |
4 |
1 2
|
subfacval |
|- ( 1 e. NN0 -> ( S ` 1 ) = ( D ` ( 1 ... 1 ) ) ) |
5 |
3 4
|
ax-mp |
|- ( S ` 1 ) = ( D ` ( 1 ... 1 ) ) |
6 |
|
1z |
|- 1 e. ZZ |
7 |
|
fzsn |
|- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
8 |
6 7
|
ax-mp |
|- ( 1 ... 1 ) = { 1 } |
9 |
8
|
fveq2i |
|- ( D ` ( 1 ... 1 ) ) = ( D ` { 1 } ) |
10 |
1
|
derangsn |
|- ( 1 e. NN0 -> ( D ` { 1 } ) = 0 ) |
11 |
3 10
|
ax-mp |
|- ( D ` { 1 } ) = 0 |
12 |
5 9 11
|
3eqtri |
|- ( S ` 1 ) = 0 |