Step |
Hyp |
Ref |
Expression |
1 |
|
derang.d |
|- D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) |
2 |
|
subfac.n |
|- S = ( n e. NN0 |-> ( D ` ( 1 ... n ) ) ) |
3 |
|
fzfi |
|- ( 1 ... n ) e. Fin |
4 |
1
|
derangf |
|- D : Fin --> NN0 |
5 |
4
|
ffvelrni |
|- ( ( 1 ... n ) e. Fin -> ( D ` ( 1 ... n ) ) e. NN0 ) |
6 |
3 5
|
ax-mp |
|- ( D ` ( 1 ... n ) ) e. NN0 |
7 |
6
|
rgenw |
|- A. n e. NN0 ( D ` ( 1 ... n ) ) e. NN0 |
8 |
2
|
fmpt |
|- ( A. n e. NN0 ( D ` ( 1 ... n ) ) e. NN0 <-> S : NN0 --> NN0 ) |
9 |
7 8
|
mpbi |
|- S : NN0 --> NN0 |