Metamath Proof Explorer


Theorem subfacp1lem2b

Description: Lemma for subfacp1 . Properties of a bijection on K augmented with the two-element flip to get a bijection on K u. { 1 , M } . (Contributed by Mario Carneiro, 23-Jan-2015)

Ref Expression
Hypotheses derang.d
|- D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) )
subfac.n
|- S = ( n e. NN0 |-> ( D ` ( 1 ... n ) ) )
subfacp1lem.a
|- A = { f | ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) }
subfacp1lem1.n
|- ( ph -> N e. NN )
subfacp1lem1.m
|- ( ph -> M e. ( 2 ... ( N + 1 ) ) )
subfacp1lem1.x
|- M e. _V
subfacp1lem1.k
|- K = ( ( 2 ... ( N + 1 ) ) \ { M } )
subfacp1lem2.5
|- F = ( G u. { <. 1 , M >. , <. M , 1 >. } )
subfacp1lem2.6
|- ( ph -> G : K -1-1-onto-> K )
Assertion subfacp1lem2b
|- ( ( ph /\ X e. K ) -> ( F ` X ) = ( G ` X ) )

Proof

Step Hyp Ref Expression
1 derang.d
 |-  D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) )
2 subfac.n
 |-  S = ( n e. NN0 |-> ( D ` ( 1 ... n ) ) )
3 subfacp1lem.a
 |-  A = { f | ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) }
4 subfacp1lem1.n
 |-  ( ph -> N e. NN )
5 subfacp1lem1.m
 |-  ( ph -> M e. ( 2 ... ( N + 1 ) ) )
6 subfacp1lem1.x
 |-  M e. _V
7 subfacp1lem1.k
 |-  K = ( ( 2 ... ( N + 1 ) ) \ { M } )
8 subfacp1lem2.5
 |-  F = ( G u. { <. 1 , M >. , <. M , 1 >. } )
9 subfacp1lem2.6
 |-  ( ph -> G : K -1-1-onto-> K )
10 1 2 3 4 5 6 7 8 9 subfacp1lem2a
 |-  ( ph -> ( F : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ ( F ` 1 ) = M /\ ( F ` M ) = 1 ) )
11 10 simp1d
 |-  ( ph -> F : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) )
12 f1ofun
 |-  ( F : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) -> Fun F )
13 11 12 syl
 |-  ( ph -> Fun F )
14 13 adantr
 |-  ( ( ph /\ X e. K ) -> Fun F )
15 ssun1
 |-  G C_ ( G u. { <. 1 , M >. , <. M , 1 >. } )
16 15 8 sseqtrri
 |-  G C_ F
17 16 a1i
 |-  ( ( ph /\ X e. K ) -> G C_ F )
18 f1odm
 |-  ( G : K -1-1-onto-> K -> dom G = K )
19 9 18 syl
 |-  ( ph -> dom G = K )
20 19 eleq2d
 |-  ( ph -> ( X e. dom G <-> X e. K ) )
21 20 biimpar
 |-  ( ( ph /\ X e. K ) -> X e. dom G )
22 funssfv
 |-  ( ( Fun F /\ G C_ F /\ X e. dom G ) -> ( F ` X ) = ( G ` X ) )
23 14 17 21 22 syl3anc
 |-  ( ( ph /\ X e. K ) -> ( F ` X ) = ( G ` X ) )