Step |
Hyp |
Ref |
Expression |
1 |
|
derang.d |
|- D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) |
2 |
|
subfac.n |
|- S = ( n e. NN0 |-> ( D ` ( 1 ... n ) ) ) |
3 |
|
subfacp1lem.a |
|- A = { f | ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) } |
4 |
|
subfacp1lem1.n |
|- ( ph -> N e. NN ) |
5 |
|
subfacp1lem1.m |
|- ( ph -> M e. ( 2 ... ( N + 1 ) ) ) |
6 |
|
subfacp1lem1.x |
|- M e. _V |
7 |
|
subfacp1lem1.k |
|- K = ( ( 2 ... ( N + 1 ) ) \ { M } ) |
8 |
|
subfacp1lem2.5 |
|- F = ( G u. { <. 1 , M >. , <. M , 1 >. } ) |
9 |
|
subfacp1lem2.6 |
|- ( ph -> G : K -1-1-onto-> K ) |
10 |
1 2 3 4 5 6 7 8 9
|
subfacp1lem2a |
|- ( ph -> ( F : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ ( F ` 1 ) = M /\ ( F ` M ) = 1 ) ) |
11 |
10
|
simp1d |
|- ( ph -> F : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) ) |
12 |
|
f1ofun |
|- ( F : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) -> Fun F ) |
13 |
11 12
|
syl |
|- ( ph -> Fun F ) |
14 |
13
|
adantr |
|- ( ( ph /\ X e. K ) -> Fun F ) |
15 |
|
ssun1 |
|- G C_ ( G u. { <. 1 , M >. , <. M , 1 >. } ) |
16 |
15 8
|
sseqtrri |
|- G C_ F |
17 |
16
|
a1i |
|- ( ( ph /\ X e. K ) -> G C_ F ) |
18 |
|
f1odm |
|- ( G : K -1-1-onto-> K -> dom G = K ) |
19 |
9 18
|
syl |
|- ( ph -> dom G = K ) |
20 |
19
|
eleq2d |
|- ( ph -> ( X e. dom G <-> X e. K ) ) |
21 |
20
|
biimpar |
|- ( ( ph /\ X e. K ) -> X e. dom G ) |
22 |
|
funssfv |
|- ( ( Fun F /\ G C_ F /\ X e. dom G ) -> ( F ` X ) = ( G ` X ) ) |
23 |
14 17 21 22
|
syl3anc |
|- ( ( ph /\ X e. K ) -> ( F ` X ) = ( G ` X ) ) |