| Step |
Hyp |
Ref |
Expression |
| 1 |
|
derang.d |
|- D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) |
| 2 |
|
subfac.n |
|- S = ( n e. NN0 |-> ( D ` ( 1 ... n ) ) ) |
| 3 |
|
subfacp1lem.a |
|- A = { f | ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) } |
| 4 |
|
peano2nn |
|- ( N e. NN -> ( N + 1 ) e. NN ) |
| 5 |
4
|
nnnn0d |
|- ( N e. NN -> ( N + 1 ) e. NN0 ) |
| 6 |
1 2
|
subfacval |
|- ( ( N + 1 ) e. NN0 -> ( S ` ( N + 1 ) ) = ( D ` ( 1 ... ( N + 1 ) ) ) ) |
| 7 |
5 6
|
syl |
|- ( N e. NN -> ( S ` ( N + 1 ) ) = ( D ` ( 1 ... ( N + 1 ) ) ) ) |
| 8 |
|
fzfid |
|- ( N e. NN -> ( 1 ... ( N + 1 ) ) e. Fin ) |
| 9 |
1
|
derangval |
|- ( ( 1 ... ( N + 1 ) ) e. Fin -> ( D ` ( 1 ... ( N + 1 ) ) ) = ( # ` { f | ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) } ) ) |
| 10 |
8 9
|
syl |
|- ( N e. NN -> ( D ` ( 1 ... ( N + 1 ) ) ) = ( # ` { f | ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) } ) ) |
| 11 |
3
|
fveq2i |
|- ( # ` A ) = ( # ` { f | ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) } ) |
| 12 |
10 11
|
eqtr4di |
|- ( N e. NN -> ( D ` ( 1 ... ( N + 1 ) ) ) = ( # ` A ) ) |
| 13 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 14 |
4 13
|
eleqtrdi |
|- ( N e. NN -> ( N + 1 ) e. ( ZZ>= ` 1 ) ) |
| 15 |
|
eluzfz1 |
|- ( ( N + 1 ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( N + 1 ) ) ) |
| 16 |
14 15
|
syl |
|- ( N e. NN -> 1 e. ( 1 ... ( N + 1 ) ) ) |
| 17 |
|
f1of |
|- ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) -> f : ( 1 ... ( N + 1 ) ) --> ( 1 ... ( N + 1 ) ) ) |
| 18 |
17
|
adantr |
|- ( ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) -> f : ( 1 ... ( N + 1 ) ) --> ( 1 ... ( N + 1 ) ) ) |
| 19 |
|
ffvelcdm |
|- ( ( f : ( 1 ... ( N + 1 ) ) --> ( 1 ... ( N + 1 ) ) /\ 1 e. ( 1 ... ( N + 1 ) ) ) -> ( f ` 1 ) e. ( 1 ... ( N + 1 ) ) ) |
| 20 |
19
|
expcom |
|- ( 1 e. ( 1 ... ( N + 1 ) ) -> ( f : ( 1 ... ( N + 1 ) ) --> ( 1 ... ( N + 1 ) ) -> ( f ` 1 ) e. ( 1 ... ( N + 1 ) ) ) ) |
| 21 |
16 18 20
|
syl2im |
|- ( N e. NN -> ( ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) -> ( f ` 1 ) e. ( 1 ... ( N + 1 ) ) ) ) |
| 22 |
21
|
ss2abdv |
|- ( N e. NN -> { f | ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) } C_ { f | ( f ` 1 ) e. ( 1 ... ( N + 1 ) ) } ) |
| 23 |
|
fveq1 |
|- ( g = f -> ( g ` 1 ) = ( f ` 1 ) ) |
| 24 |
23
|
eleq1d |
|- ( g = f -> ( ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) <-> ( f ` 1 ) e. ( 1 ... ( N + 1 ) ) ) ) |
| 25 |
24
|
cbvabv |
|- { g | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } = { f | ( f ` 1 ) e. ( 1 ... ( N + 1 ) ) } |
| 26 |
22 3 25
|
3sstr4g |
|- ( N e. NN -> A C_ { g | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } ) |
| 27 |
|
ssabral |
|- ( A C_ { g | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } <-> A. g e. A ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) ) |
| 28 |
26 27
|
sylib |
|- ( N e. NN -> A. g e. A ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) ) |
| 29 |
|
rabid2 |
|- ( A = { g e. A | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } <-> A. g e. A ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) ) |
| 30 |
28 29
|
sylibr |
|- ( N e. NN -> A = { g e. A | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } ) |
| 31 |
30
|
fveq2d |
|- ( N e. NN -> ( # ` A ) = ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } ) ) |
| 32 |
7 12 31
|
3eqtrd |
|- ( N e. NN -> ( S ` ( N + 1 ) ) = ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } ) ) |
| 33 |
|
elfz1end |
|- ( ( N + 1 ) e. NN <-> ( N + 1 ) e. ( 1 ... ( N + 1 ) ) ) |
| 34 |
4 33
|
sylib |
|- ( N e. NN -> ( N + 1 ) e. ( 1 ... ( N + 1 ) ) ) |
| 35 |
|
eleq1 |
|- ( x = 1 -> ( x e. ( 1 ... ( N + 1 ) ) <-> 1 e. ( 1 ... ( N + 1 ) ) ) ) |
| 36 |
|
oveq2 |
|- ( x = 1 -> ( 1 ... x ) = ( 1 ... 1 ) ) |
| 37 |
|
1z |
|- 1 e. ZZ |
| 38 |
|
fzsn |
|- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
| 39 |
37 38
|
ax-mp |
|- ( 1 ... 1 ) = { 1 } |
| 40 |
36 39
|
eqtrdi |
|- ( x = 1 -> ( 1 ... x ) = { 1 } ) |
| 41 |
40
|
eleq2d |
|- ( x = 1 -> ( ( g ` 1 ) e. ( 1 ... x ) <-> ( g ` 1 ) e. { 1 } ) ) |
| 42 |
|
fvex |
|- ( g ` 1 ) e. _V |
| 43 |
42
|
elsn |
|- ( ( g ` 1 ) e. { 1 } <-> ( g ` 1 ) = 1 ) |
| 44 |
41 43
|
bitrdi |
|- ( x = 1 -> ( ( g ` 1 ) e. ( 1 ... x ) <-> ( g ` 1 ) = 1 ) ) |
| 45 |
44
|
rabbidv |
|- ( x = 1 -> { g e. A | ( g ` 1 ) e. ( 1 ... x ) } = { g e. A | ( g ` 1 ) = 1 } ) |
| 46 |
45
|
fveq2d |
|- ( x = 1 -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( # ` { g e. A | ( g ` 1 ) = 1 } ) ) |
| 47 |
|
oveq1 |
|- ( x = 1 -> ( x - 1 ) = ( 1 - 1 ) ) |
| 48 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 49 |
47 48
|
eqtrdi |
|- ( x = 1 -> ( x - 1 ) = 0 ) |
| 50 |
49
|
oveq1d |
|- ( x = 1 -> ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) = ( 0 x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) |
| 51 |
46 50
|
eqeq12d |
|- ( x = 1 -> ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) <-> ( # ` { g e. A | ( g ` 1 ) = 1 } ) = ( 0 x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) |
| 52 |
35 51
|
imbi12d |
|- ( x = 1 -> ( ( x e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) <-> ( 1 e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) = 1 } ) = ( 0 x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) ) |
| 53 |
52
|
imbi2d |
|- ( x = 1 -> ( ( N e. NN -> ( x e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) <-> ( N e. NN -> ( 1 e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) = 1 } ) = ( 0 x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) ) ) |
| 54 |
|
eleq1 |
|- ( x = m -> ( x e. ( 1 ... ( N + 1 ) ) <-> m e. ( 1 ... ( N + 1 ) ) ) ) |
| 55 |
|
oveq2 |
|- ( x = m -> ( 1 ... x ) = ( 1 ... m ) ) |
| 56 |
55
|
eleq2d |
|- ( x = m -> ( ( g ` 1 ) e. ( 1 ... x ) <-> ( g ` 1 ) e. ( 1 ... m ) ) ) |
| 57 |
56
|
rabbidv |
|- ( x = m -> { g e. A | ( g ` 1 ) e. ( 1 ... x ) } = { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) |
| 58 |
57
|
fveq2d |
|- ( x = m -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) ) |
| 59 |
|
oveq1 |
|- ( x = m -> ( x - 1 ) = ( m - 1 ) ) |
| 60 |
59
|
oveq1d |
|- ( x = m -> ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) |
| 61 |
58 60
|
eqeq12d |
|- ( x = m -> ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) <-> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) |
| 62 |
54 61
|
imbi12d |
|- ( x = m -> ( ( x e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) <-> ( m e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) ) |
| 63 |
62
|
imbi2d |
|- ( x = m -> ( ( N e. NN -> ( x e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) <-> ( N e. NN -> ( m e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) ) ) |
| 64 |
|
eleq1 |
|- ( x = ( m + 1 ) -> ( x e. ( 1 ... ( N + 1 ) ) <-> ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) ) |
| 65 |
|
oveq2 |
|- ( x = ( m + 1 ) -> ( 1 ... x ) = ( 1 ... ( m + 1 ) ) ) |
| 66 |
65
|
eleq2d |
|- ( x = ( m + 1 ) -> ( ( g ` 1 ) e. ( 1 ... x ) <-> ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) ) ) |
| 67 |
66
|
rabbidv |
|- ( x = ( m + 1 ) -> { g e. A | ( g ` 1 ) e. ( 1 ... x ) } = { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) |
| 68 |
67
|
fveq2d |
|- ( x = ( m + 1 ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) ) |
| 69 |
|
oveq1 |
|- ( x = ( m + 1 ) -> ( x - 1 ) = ( ( m + 1 ) - 1 ) ) |
| 70 |
69
|
oveq1d |
|- ( x = ( m + 1 ) -> ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) = ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) |
| 71 |
68 70
|
eqeq12d |
|- ( x = ( m + 1 ) -> ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) <-> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) = ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) |
| 72 |
64 71
|
imbi12d |
|- ( x = ( m + 1 ) -> ( ( x e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) <-> ( ( m + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) = ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) ) |
| 73 |
72
|
imbi2d |
|- ( x = ( m + 1 ) -> ( ( N e. NN -> ( x e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) <-> ( N e. NN -> ( ( m + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) = ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) ) ) |
| 74 |
|
eleq1 |
|- ( x = ( N + 1 ) -> ( x e. ( 1 ... ( N + 1 ) ) <-> ( N + 1 ) e. ( 1 ... ( N + 1 ) ) ) ) |
| 75 |
|
oveq2 |
|- ( x = ( N + 1 ) -> ( 1 ... x ) = ( 1 ... ( N + 1 ) ) ) |
| 76 |
75
|
eleq2d |
|- ( x = ( N + 1 ) -> ( ( g ` 1 ) e. ( 1 ... x ) <-> ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) ) ) |
| 77 |
76
|
rabbidv |
|- ( x = ( N + 1 ) -> { g e. A | ( g ` 1 ) e. ( 1 ... x ) } = { g e. A | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } ) |
| 78 |
77
|
fveq2d |
|- ( x = ( N + 1 ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } ) ) |
| 79 |
|
oveq1 |
|- ( x = ( N + 1 ) -> ( x - 1 ) = ( ( N + 1 ) - 1 ) ) |
| 80 |
79
|
oveq1d |
|- ( x = ( N + 1 ) -> ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) = ( ( ( N + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) |
| 81 |
78 80
|
eqeq12d |
|- ( x = ( N + 1 ) -> ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) <-> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } ) = ( ( ( N + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) |
| 82 |
74 81
|
imbi12d |
|- ( x = ( N + 1 ) -> ( ( x e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) <-> ( ( N + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } ) = ( ( ( N + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) ) |
| 83 |
82
|
imbi2d |
|- ( x = ( N + 1 ) -> ( ( N e. NN -> ( x e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... x ) } ) = ( ( x - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) <-> ( N e. NN -> ( ( N + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } ) = ( ( ( N + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) ) ) |
| 84 |
|
hash0 |
|- ( # ` (/) ) = 0 |
| 85 |
|
fveq2 |
|- ( y = 1 -> ( f ` y ) = ( f ` 1 ) ) |
| 86 |
|
id |
|- ( y = 1 -> y = 1 ) |
| 87 |
85 86
|
neeq12d |
|- ( y = 1 -> ( ( f ` y ) =/= y <-> ( f ` 1 ) =/= 1 ) ) |
| 88 |
87
|
rspcv |
|- ( 1 e. ( 1 ... ( N + 1 ) ) -> ( A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y -> ( f ` 1 ) =/= 1 ) ) |
| 89 |
16 88
|
syl |
|- ( N e. NN -> ( A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y -> ( f ` 1 ) =/= 1 ) ) |
| 90 |
89
|
adantld |
|- ( N e. NN -> ( ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) -> ( f ` 1 ) =/= 1 ) ) |
| 91 |
90
|
ss2abdv |
|- ( N e. NN -> { f | ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) } C_ { f | ( f ` 1 ) =/= 1 } ) |
| 92 |
|
df-ne |
|- ( ( g ` 1 ) =/= 1 <-> -. ( g ` 1 ) = 1 ) |
| 93 |
23
|
neeq1d |
|- ( g = f -> ( ( g ` 1 ) =/= 1 <-> ( f ` 1 ) =/= 1 ) ) |
| 94 |
92 93
|
bitr3id |
|- ( g = f -> ( -. ( g ` 1 ) = 1 <-> ( f ` 1 ) =/= 1 ) ) |
| 95 |
94
|
cbvabv |
|- { g | -. ( g ` 1 ) = 1 } = { f | ( f ` 1 ) =/= 1 } |
| 96 |
91 3 95
|
3sstr4g |
|- ( N e. NN -> A C_ { g | -. ( g ` 1 ) = 1 } ) |
| 97 |
|
ssabral |
|- ( A C_ { g | -. ( g ` 1 ) = 1 } <-> A. g e. A -. ( g ` 1 ) = 1 ) |
| 98 |
96 97
|
sylib |
|- ( N e. NN -> A. g e. A -. ( g ` 1 ) = 1 ) |
| 99 |
|
rabeq0 |
|- ( { g e. A | ( g ` 1 ) = 1 } = (/) <-> A. g e. A -. ( g ` 1 ) = 1 ) |
| 100 |
98 99
|
sylibr |
|- ( N e. NN -> { g e. A | ( g ` 1 ) = 1 } = (/) ) |
| 101 |
100
|
fveq2d |
|- ( N e. NN -> ( # ` { g e. A | ( g ` 1 ) = 1 } ) = ( # ` (/) ) ) |
| 102 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 103 |
1 2
|
subfacf |
|- S : NN0 --> NN0 |
| 104 |
103
|
ffvelcdmi |
|- ( N e. NN0 -> ( S ` N ) e. NN0 ) |
| 105 |
102 104
|
syl |
|- ( N e. NN -> ( S ` N ) e. NN0 ) |
| 106 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
| 107 |
103
|
ffvelcdmi |
|- ( ( N - 1 ) e. NN0 -> ( S ` ( N - 1 ) ) e. NN0 ) |
| 108 |
106 107
|
syl |
|- ( N e. NN -> ( S ` ( N - 1 ) ) e. NN0 ) |
| 109 |
105 108
|
nn0addcld |
|- ( N e. NN -> ( ( S ` N ) + ( S ` ( N - 1 ) ) ) e. NN0 ) |
| 110 |
109
|
nn0cnd |
|- ( N e. NN -> ( ( S ` N ) + ( S ` ( N - 1 ) ) ) e. CC ) |
| 111 |
110
|
mul02d |
|- ( N e. NN -> ( 0 x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) = 0 ) |
| 112 |
84 101 111
|
3eqtr4a |
|- ( N e. NN -> ( # ` { g e. A | ( g ` 1 ) = 1 } ) = ( 0 x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) |
| 113 |
112
|
a1d |
|- ( N e. NN -> ( 1 e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) = 1 } ) = ( 0 x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) |
| 114 |
|
simplr |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> m e. NN ) |
| 115 |
114 13
|
eleqtrdi |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> m e. ( ZZ>= ` 1 ) ) |
| 116 |
|
peano2fzr |
|- ( ( m e. ( ZZ>= ` 1 ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> m e. ( 1 ... ( N + 1 ) ) ) |
| 117 |
115 116
|
sylancom |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> m e. ( 1 ... ( N + 1 ) ) ) |
| 118 |
117
|
ex |
|- ( ( N e. NN /\ m e. NN ) -> ( ( m + 1 ) e. ( 1 ... ( N + 1 ) ) -> m e. ( 1 ... ( N + 1 ) ) ) ) |
| 119 |
118
|
imim1d |
|- ( ( N e. NN /\ m e. NN ) -> ( ( m e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) -> ( ( m + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) ) |
| 120 |
|
oveq1 |
|- ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) -> ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) + ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) = ( ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) + ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) ) |
| 121 |
|
elfzp1 |
|- ( m e. ( ZZ>= ` 1 ) -> ( ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) <-> ( ( g ` 1 ) e. ( 1 ... m ) \/ ( g ` 1 ) = ( m + 1 ) ) ) ) |
| 122 |
115 121
|
syl |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) <-> ( ( g ` 1 ) e. ( 1 ... m ) \/ ( g ` 1 ) = ( m + 1 ) ) ) ) |
| 123 |
122
|
rabbidv |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } = { g e. A | ( ( g ` 1 ) e. ( 1 ... m ) \/ ( g ` 1 ) = ( m + 1 ) ) } ) |
| 124 |
|
unrab |
|- ( { g e. A | ( g ` 1 ) e. ( 1 ... m ) } u. { g e. A | ( g ` 1 ) = ( m + 1 ) } ) = { g e. A | ( ( g ` 1 ) e. ( 1 ... m ) \/ ( g ` 1 ) = ( m + 1 ) ) } |
| 125 |
123 124
|
eqtr4di |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } = ( { g e. A | ( g ` 1 ) e. ( 1 ... m ) } u. { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) |
| 126 |
125
|
fveq2d |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) = ( # ` ( { g e. A | ( g ` 1 ) e. ( 1 ... m ) } u. { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) ) |
| 127 |
|
fzfi |
|- ( 1 ... ( N + 1 ) ) e. Fin |
| 128 |
|
deranglem |
|- ( ( 1 ... ( N + 1 ) ) e. Fin -> { f | ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) } e. Fin ) |
| 129 |
127 128
|
ax-mp |
|- { f | ( f : ( 1 ... ( N + 1 ) ) -1-1-onto-> ( 1 ... ( N + 1 ) ) /\ A. y e. ( 1 ... ( N + 1 ) ) ( f ` y ) =/= y ) } e. Fin |
| 130 |
3 129
|
eqeltri |
|- A e. Fin |
| 131 |
|
ssrab2 |
|- { g e. A | ( g ` 1 ) e. ( 1 ... m ) } C_ A |
| 132 |
|
ssfi |
|- ( ( A e. Fin /\ { g e. A | ( g ` 1 ) e. ( 1 ... m ) } C_ A ) -> { g e. A | ( g ` 1 ) e. ( 1 ... m ) } e. Fin ) |
| 133 |
130 131 132
|
mp2an |
|- { g e. A | ( g ` 1 ) e. ( 1 ... m ) } e. Fin |
| 134 |
|
ssrab2 |
|- { g e. A | ( g ` 1 ) = ( m + 1 ) } C_ A |
| 135 |
|
ssfi |
|- ( ( A e. Fin /\ { g e. A | ( g ` 1 ) = ( m + 1 ) } C_ A ) -> { g e. A | ( g ` 1 ) = ( m + 1 ) } e. Fin ) |
| 136 |
130 134 135
|
mp2an |
|- { g e. A | ( g ` 1 ) = ( m + 1 ) } e. Fin |
| 137 |
|
inrab |
|- ( { g e. A | ( g ` 1 ) e. ( 1 ... m ) } i^i { g e. A | ( g ` 1 ) = ( m + 1 ) } ) = { g e. A | ( ( g ` 1 ) e. ( 1 ... m ) /\ ( g ` 1 ) = ( m + 1 ) ) } |
| 138 |
|
fzp1disj |
|- ( ( 1 ... m ) i^i { ( m + 1 ) } ) = (/) |
| 139 |
42
|
elsn |
|- ( ( g ` 1 ) e. { ( m + 1 ) } <-> ( g ` 1 ) = ( m + 1 ) ) |
| 140 |
|
inelcm |
|- ( ( ( g ` 1 ) e. ( 1 ... m ) /\ ( g ` 1 ) e. { ( m + 1 ) } ) -> ( ( 1 ... m ) i^i { ( m + 1 ) } ) =/= (/) ) |
| 141 |
139 140
|
sylan2br |
|- ( ( ( g ` 1 ) e. ( 1 ... m ) /\ ( g ` 1 ) = ( m + 1 ) ) -> ( ( 1 ... m ) i^i { ( m + 1 ) } ) =/= (/) ) |
| 142 |
141
|
necon2bi |
|- ( ( ( 1 ... m ) i^i { ( m + 1 ) } ) = (/) -> -. ( ( g ` 1 ) e. ( 1 ... m ) /\ ( g ` 1 ) = ( m + 1 ) ) ) |
| 143 |
138 142
|
ax-mp |
|- -. ( ( g ` 1 ) e. ( 1 ... m ) /\ ( g ` 1 ) = ( m + 1 ) ) |
| 144 |
143
|
rgenw |
|- A. g e. A -. ( ( g ` 1 ) e. ( 1 ... m ) /\ ( g ` 1 ) = ( m + 1 ) ) |
| 145 |
|
rabeq0 |
|- ( { g e. A | ( ( g ` 1 ) e. ( 1 ... m ) /\ ( g ` 1 ) = ( m + 1 ) ) } = (/) <-> A. g e. A -. ( ( g ` 1 ) e. ( 1 ... m ) /\ ( g ` 1 ) = ( m + 1 ) ) ) |
| 146 |
144 145
|
mpbir |
|- { g e. A | ( ( g ` 1 ) e. ( 1 ... m ) /\ ( g ` 1 ) = ( m + 1 ) ) } = (/) |
| 147 |
137 146
|
eqtri |
|- ( { g e. A | ( g ` 1 ) e. ( 1 ... m ) } i^i { g e. A | ( g ` 1 ) = ( m + 1 ) } ) = (/) |
| 148 |
|
hashun |
|- ( ( { g e. A | ( g ` 1 ) e. ( 1 ... m ) } e. Fin /\ { g e. A | ( g ` 1 ) = ( m + 1 ) } e. Fin /\ ( { g e. A | ( g ` 1 ) e. ( 1 ... m ) } i^i { g e. A | ( g ` 1 ) = ( m + 1 ) } ) = (/) ) -> ( # ` ( { g e. A | ( g ` 1 ) e. ( 1 ... m ) } u. { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) = ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) + ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) ) |
| 149 |
133 136 147 148
|
mp3an |
|- ( # ` ( { g e. A | ( g ` 1 ) e. ( 1 ... m ) } u. { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) = ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) + ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) |
| 150 |
126 149
|
eqtrdi |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) = ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) + ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) ) |
| 151 |
|
nncn |
|- ( m e. NN -> m e. CC ) |
| 152 |
151
|
ad2antlr |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> m e. CC ) |
| 153 |
|
ax-1cn |
|- 1 e. CC |
| 154 |
153
|
a1i |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> 1 e. CC ) |
| 155 |
152 154 154
|
addsubd |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( ( m + 1 ) - 1 ) = ( ( m - 1 ) + 1 ) ) |
| 156 |
155
|
oveq1d |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) = ( ( ( m - 1 ) + 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) |
| 157 |
|
subcl |
|- ( ( m e. CC /\ 1 e. CC ) -> ( m - 1 ) e. CC ) |
| 158 |
152 153 157
|
sylancl |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( m - 1 ) e. CC ) |
| 159 |
109
|
ad2antrr |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( ( S ` N ) + ( S ` ( N - 1 ) ) ) e. NN0 ) |
| 160 |
159
|
nn0cnd |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( ( S ` N ) + ( S ` ( N - 1 ) ) ) e. CC ) |
| 161 |
158 154 160
|
adddird |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( m - 1 ) + 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) = ( ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) + ( 1 x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) |
| 162 |
160
|
mullidd |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( 1 x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) = ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) |
| 163 |
|
exmidne |
|- ( ( g ` ( m + 1 ) ) = 1 \/ ( g ` ( m + 1 ) ) =/= 1 ) |
| 164 |
|
orcom |
|- ( ( ( g ` ( m + 1 ) ) = 1 \/ ( g ` ( m + 1 ) ) =/= 1 ) <-> ( ( g ` ( m + 1 ) ) =/= 1 \/ ( g ` ( m + 1 ) ) = 1 ) ) |
| 165 |
163 164
|
mpbi |
|- ( ( g ` ( m + 1 ) ) =/= 1 \/ ( g ` ( m + 1 ) ) = 1 ) |
| 166 |
165
|
biantru |
|- ( ( g ` 1 ) = ( m + 1 ) <-> ( ( g ` 1 ) = ( m + 1 ) /\ ( ( g ` ( m + 1 ) ) =/= 1 \/ ( g ` ( m + 1 ) ) = 1 ) ) ) |
| 167 |
|
andi |
|- ( ( ( g ` 1 ) = ( m + 1 ) /\ ( ( g ` ( m + 1 ) ) =/= 1 \/ ( g ` ( m + 1 ) ) = 1 ) ) <-> ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) \/ ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) ) ) |
| 168 |
166 167
|
bitri |
|- ( ( g ` 1 ) = ( m + 1 ) <-> ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) \/ ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) ) ) |
| 169 |
168
|
rabbii |
|- { g e. A | ( g ` 1 ) = ( m + 1 ) } = { g e. A | ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) \/ ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) ) } |
| 170 |
|
unrab |
|- ( { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } u. { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) = { g e. A | ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) \/ ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) ) } |
| 171 |
169 170
|
eqtr4i |
|- { g e. A | ( g ` 1 ) = ( m + 1 ) } = ( { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } u. { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) |
| 172 |
171
|
fveq2i |
|- ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) = ( # ` ( { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } u. { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) ) |
| 173 |
|
ssrab2 |
|- { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } C_ A |
| 174 |
|
ssfi |
|- ( ( A e. Fin /\ { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } C_ A ) -> { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } e. Fin ) |
| 175 |
130 173 174
|
mp2an |
|- { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } e. Fin |
| 176 |
|
ssrab2 |
|- { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } C_ A |
| 177 |
|
ssfi |
|- ( ( A e. Fin /\ { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } C_ A ) -> { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } e. Fin ) |
| 178 |
130 176 177
|
mp2an |
|- { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } e. Fin |
| 179 |
|
inrab |
|- ( { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } i^i { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) = { g e. A | ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) /\ ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) ) } |
| 180 |
|
simpr |
|- ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) -> ( g ` ( m + 1 ) ) = 1 ) |
| 181 |
180
|
necon3ai |
|- ( ( g ` ( m + 1 ) ) =/= 1 -> -. ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) ) |
| 182 |
181
|
adantl |
|- ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) -> -. ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) ) |
| 183 |
|
imnan |
|- ( ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) -> -. ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) ) <-> -. ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) /\ ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) ) ) |
| 184 |
182 183
|
mpbi |
|- -. ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) /\ ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) ) |
| 185 |
184
|
rgenw |
|- A. g e. A -. ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) /\ ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) ) |
| 186 |
|
rabeq0 |
|- ( { g e. A | ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) /\ ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) ) } = (/) <-> A. g e. A -. ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) /\ ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) ) ) |
| 187 |
185 186
|
mpbir |
|- { g e. A | ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) /\ ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) ) } = (/) |
| 188 |
179 187
|
eqtri |
|- ( { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } i^i { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) = (/) |
| 189 |
|
hashun |
|- ( ( { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } e. Fin /\ { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } e. Fin /\ ( { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } i^i { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) = (/) ) -> ( # ` ( { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } u. { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) ) = ( ( # ` { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } ) + ( # ` { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) ) ) |
| 190 |
175 178 188 189
|
mp3an |
|- ( # ` ( { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } u. { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) ) = ( ( # ` { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } ) + ( # ` { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) ) |
| 191 |
172 190
|
eqtri |
|- ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) = ( ( # ` { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } ) + ( # ` { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) ) |
| 192 |
|
simpll |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> N e. NN ) |
| 193 |
|
nnne0 |
|- ( m e. NN -> m =/= 0 ) |
| 194 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 195 |
194
|
eqeq2i |
|- ( ( m + 1 ) = ( 0 + 1 ) <-> ( m + 1 ) = 1 ) |
| 196 |
|
0cn |
|- 0 e. CC |
| 197 |
|
addcan2 |
|- ( ( m e. CC /\ 0 e. CC /\ 1 e. CC ) -> ( ( m + 1 ) = ( 0 + 1 ) <-> m = 0 ) ) |
| 198 |
196 153 197
|
mp3an23 |
|- ( m e. CC -> ( ( m + 1 ) = ( 0 + 1 ) <-> m = 0 ) ) |
| 199 |
151 198
|
syl |
|- ( m e. NN -> ( ( m + 1 ) = ( 0 + 1 ) <-> m = 0 ) ) |
| 200 |
195 199
|
bitr3id |
|- ( m e. NN -> ( ( m + 1 ) = 1 <-> m = 0 ) ) |
| 201 |
200
|
necon3bbid |
|- ( m e. NN -> ( -. ( m + 1 ) = 1 <-> m =/= 0 ) ) |
| 202 |
193 201
|
mpbird |
|- ( m e. NN -> -. ( m + 1 ) = 1 ) |
| 203 |
202
|
ad2antlr |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> -. ( m + 1 ) = 1 ) |
| 204 |
14
|
adantr |
|- ( ( N e. NN /\ m e. NN ) -> ( N + 1 ) e. ( ZZ>= ` 1 ) ) |
| 205 |
|
elfzp12 |
|- ( ( N + 1 ) e. ( ZZ>= ` 1 ) -> ( ( m + 1 ) e. ( 1 ... ( N + 1 ) ) <-> ( ( m + 1 ) = 1 \/ ( m + 1 ) e. ( ( 1 + 1 ) ... ( N + 1 ) ) ) ) ) |
| 206 |
204 205
|
syl |
|- ( ( N e. NN /\ m e. NN ) -> ( ( m + 1 ) e. ( 1 ... ( N + 1 ) ) <-> ( ( m + 1 ) = 1 \/ ( m + 1 ) e. ( ( 1 + 1 ) ... ( N + 1 ) ) ) ) ) |
| 207 |
206
|
biimpa |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( ( m + 1 ) = 1 \/ ( m + 1 ) e. ( ( 1 + 1 ) ... ( N + 1 ) ) ) ) |
| 208 |
207
|
ord |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( -. ( m + 1 ) = 1 -> ( m + 1 ) e. ( ( 1 + 1 ) ... ( N + 1 ) ) ) ) |
| 209 |
203 208
|
mpd |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( m + 1 ) e. ( ( 1 + 1 ) ... ( N + 1 ) ) ) |
| 210 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 211 |
210
|
oveq1i |
|- ( 2 ... ( N + 1 ) ) = ( ( 1 + 1 ) ... ( N + 1 ) ) |
| 212 |
209 211
|
eleqtrrdi |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( m + 1 ) e. ( 2 ... ( N + 1 ) ) ) |
| 213 |
|
ovex |
|- ( m + 1 ) e. _V |
| 214 |
|
eqid |
|- ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) = ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) |
| 215 |
|
fveq1 |
|- ( g = h -> ( g ` 1 ) = ( h ` 1 ) ) |
| 216 |
215
|
eqeq1d |
|- ( g = h -> ( ( g ` 1 ) = ( m + 1 ) <-> ( h ` 1 ) = ( m + 1 ) ) ) |
| 217 |
|
fveq1 |
|- ( g = h -> ( g ` ( m + 1 ) ) = ( h ` ( m + 1 ) ) ) |
| 218 |
217
|
neeq1d |
|- ( g = h -> ( ( g ` ( m + 1 ) ) =/= 1 <-> ( h ` ( m + 1 ) ) =/= 1 ) ) |
| 219 |
216 218
|
anbi12d |
|- ( g = h -> ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) <-> ( ( h ` 1 ) = ( m + 1 ) /\ ( h ` ( m + 1 ) ) =/= 1 ) ) ) |
| 220 |
219
|
cbvrabv |
|- { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } = { h e. A | ( ( h ` 1 ) = ( m + 1 ) /\ ( h ` ( m + 1 ) ) =/= 1 ) } |
| 221 |
|
eqid |
|- ( ( _I |` ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ) u. { <. 1 , ( m + 1 ) >. , <. ( m + 1 ) , 1 >. } ) = ( ( _I |` ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ) u. { <. 1 , ( m + 1 ) >. , <. ( m + 1 ) , 1 >. } ) |
| 222 |
|
f1oeq1 |
|- ( g = f -> ( g : ( 2 ... ( N + 1 ) ) -1-1-onto-> ( 2 ... ( N + 1 ) ) <-> f : ( 2 ... ( N + 1 ) ) -1-1-onto-> ( 2 ... ( N + 1 ) ) ) ) |
| 223 |
|
fveq2 |
|- ( z = y -> ( g ` z ) = ( g ` y ) ) |
| 224 |
|
id |
|- ( z = y -> z = y ) |
| 225 |
223 224
|
neeq12d |
|- ( z = y -> ( ( g ` z ) =/= z <-> ( g ` y ) =/= y ) ) |
| 226 |
225
|
cbvralvw |
|- ( A. z e. ( 2 ... ( N + 1 ) ) ( g ` z ) =/= z <-> A. y e. ( 2 ... ( N + 1 ) ) ( g ` y ) =/= y ) |
| 227 |
|
fveq1 |
|- ( g = f -> ( g ` y ) = ( f ` y ) ) |
| 228 |
227
|
neeq1d |
|- ( g = f -> ( ( g ` y ) =/= y <-> ( f ` y ) =/= y ) ) |
| 229 |
228
|
ralbidv |
|- ( g = f -> ( A. y e. ( 2 ... ( N + 1 ) ) ( g ` y ) =/= y <-> A. y e. ( 2 ... ( N + 1 ) ) ( f ` y ) =/= y ) ) |
| 230 |
226 229
|
bitrid |
|- ( g = f -> ( A. z e. ( 2 ... ( N + 1 ) ) ( g ` z ) =/= z <-> A. y e. ( 2 ... ( N + 1 ) ) ( f ` y ) =/= y ) ) |
| 231 |
222 230
|
anbi12d |
|- ( g = f -> ( ( g : ( 2 ... ( N + 1 ) ) -1-1-onto-> ( 2 ... ( N + 1 ) ) /\ A. z e. ( 2 ... ( N + 1 ) ) ( g ` z ) =/= z ) <-> ( f : ( 2 ... ( N + 1 ) ) -1-1-onto-> ( 2 ... ( N + 1 ) ) /\ A. y e. ( 2 ... ( N + 1 ) ) ( f ` y ) =/= y ) ) ) |
| 232 |
231
|
cbvabv |
|- { g | ( g : ( 2 ... ( N + 1 ) ) -1-1-onto-> ( 2 ... ( N + 1 ) ) /\ A. z e. ( 2 ... ( N + 1 ) ) ( g ` z ) =/= z ) } = { f | ( f : ( 2 ... ( N + 1 ) ) -1-1-onto-> ( 2 ... ( N + 1 ) ) /\ A. y e. ( 2 ... ( N + 1 ) ) ( f ` y ) =/= y ) } |
| 233 |
1 2 3 192 212 213 214 220 221 232
|
subfacp1lem5 |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( # ` { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } ) = ( S ` N ) ) |
| 234 |
217
|
eqeq1d |
|- ( g = h -> ( ( g ` ( m + 1 ) ) = 1 <-> ( h ` ( m + 1 ) ) = 1 ) ) |
| 235 |
216 234
|
anbi12d |
|- ( g = h -> ( ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) <-> ( ( h ` 1 ) = ( m + 1 ) /\ ( h ` ( m + 1 ) ) = 1 ) ) ) |
| 236 |
235
|
cbvrabv |
|- { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } = { h e. A | ( ( h ` 1 ) = ( m + 1 ) /\ ( h ` ( m + 1 ) ) = 1 ) } |
| 237 |
|
f1oeq1 |
|- ( g = f -> ( g : ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) -1-1-onto-> ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) <-> f : ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) -1-1-onto-> ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ) ) |
| 238 |
225
|
cbvralvw |
|- ( A. z e. ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ( g ` z ) =/= z <-> A. y e. ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ( g ` y ) =/= y ) |
| 239 |
228
|
ralbidv |
|- ( g = f -> ( A. y e. ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ( g ` y ) =/= y <-> A. y e. ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ( f ` y ) =/= y ) ) |
| 240 |
238 239
|
bitrid |
|- ( g = f -> ( A. z e. ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ( g ` z ) =/= z <-> A. y e. ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ( f ` y ) =/= y ) ) |
| 241 |
237 240
|
anbi12d |
|- ( g = f -> ( ( g : ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) -1-1-onto-> ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) /\ A. z e. ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ( g ` z ) =/= z ) <-> ( f : ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) -1-1-onto-> ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) /\ A. y e. ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ( f ` y ) =/= y ) ) ) |
| 242 |
241
|
cbvabv |
|- { g | ( g : ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) -1-1-onto-> ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) /\ A. z e. ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ( g ` z ) =/= z ) } = { f | ( f : ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) -1-1-onto-> ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) /\ A. y e. ( ( 2 ... ( N + 1 ) ) \ { ( m + 1 ) } ) ( f ` y ) =/= y ) } |
| 243 |
1 2 3 192 212 213 214 236 242
|
subfacp1lem3 |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( # ` { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) = ( S ` ( N - 1 ) ) ) |
| 244 |
233 243
|
oveq12d |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( ( # ` { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) =/= 1 ) } ) + ( # ` { g e. A | ( ( g ` 1 ) = ( m + 1 ) /\ ( g ` ( m + 1 ) ) = 1 ) } ) ) = ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) |
| 245 |
191 244
|
eqtrid |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) = ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) |
| 246 |
162 245
|
eqtr4d |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( 1 x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) = ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) |
| 247 |
246
|
oveq2d |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) + ( 1 x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) = ( ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) + ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) ) |
| 248 |
156 161 247
|
3eqtrd |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) = ( ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) + ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) ) |
| 249 |
150 248
|
eqeq12d |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) = ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) <-> ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) + ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) = ( ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) + ( # ` { g e. A | ( g ` 1 ) = ( m + 1 ) } ) ) ) ) |
| 250 |
120 249
|
imbitrrid |
|- ( ( ( N e. NN /\ m e. NN ) /\ ( m + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) = ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) |
| 251 |
250
|
ex |
|- ( ( N e. NN /\ m e. NN ) -> ( ( m + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) = ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) ) |
| 252 |
251
|
a2d |
|- ( ( N e. NN /\ m e. NN ) -> ( ( ( m + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) -> ( ( m + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) = ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) ) |
| 253 |
119 252
|
syld |
|- ( ( N e. NN /\ m e. NN ) -> ( ( m e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) -> ( ( m + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) = ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) ) |
| 254 |
253
|
expcom |
|- ( m e. NN -> ( N e. NN -> ( ( m e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) -> ( ( m + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) = ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) ) ) |
| 255 |
254
|
a2d |
|- ( m e. NN -> ( ( N e. NN -> ( m e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... m ) } ) = ( ( m - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) -> ( N e. NN -> ( ( m + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( m + 1 ) ) } ) = ( ( ( m + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) ) ) |
| 256 |
53 63 73 83 113 255
|
nnind |
|- ( ( N + 1 ) e. NN -> ( N e. NN -> ( ( N + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } ) = ( ( ( N + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) ) |
| 257 |
4 256
|
mpcom |
|- ( N e. NN -> ( ( N + 1 ) e. ( 1 ... ( N + 1 ) ) -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } ) = ( ( ( N + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) ) |
| 258 |
34 257
|
mpd |
|- ( N e. NN -> ( # ` { g e. A | ( g ` 1 ) e. ( 1 ... ( N + 1 ) ) } ) = ( ( ( N + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) |
| 259 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 260 |
|
pncan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) |
| 261 |
259 153 260
|
sylancl |
|- ( N e. NN -> ( ( N + 1 ) - 1 ) = N ) |
| 262 |
261
|
oveq1d |
|- ( N e. NN -> ( ( ( N + 1 ) - 1 ) x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) = ( N x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) |
| 263 |
32 258 262
|
3eqtrd |
|- ( N e. NN -> ( S ` ( N + 1 ) ) = ( N x. ( ( S ` N ) + ( S ` ( N - 1 ) ) ) ) ) |