| Step |
Hyp |
Ref |
Expression |
| 1 |
|
derang.d |
|- D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) |
| 2 |
|
subfac.n |
|- S = ( n e. NN0 |-> ( D ` ( 1 ... n ) ) ) |
| 3 |
|
fveq2 |
|- ( x = 0 -> ( S ` x ) = ( S ` 0 ) ) |
| 4 |
1 2
|
subfac0 |
|- ( S ` 0 ) = 1 |
| 5 |
3 4
|
eqtrdi |
|- ( x = 0 -> ( S ` x ) = 1 ) |
| 6 |
|
fveq2 |
|- ( x = 0 -> ( ! ` x ) = ( ! ` 0 ) ) |
| 7 |
|
fac0 |
|- ( ! ` 0 ) = 1 |
| 8 |
6 7
|
eqtrdi |
|- ( x = 0 -> ( ! ` x ) = 1 ) |
| 9 |
|
oveq2 |
|- ( x = 0 -> ( 0 ... x ) = ( 0 ... 0 ) ) |
| 10 |
9
|
sumeq1d |
|- ( x = 0 -> sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = sum_ k e. ( 0 ... 0 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) |
| 11 |
8 10
|
oveq12d |
|- ( x = 0 -> ( ( ! ` x ) x. sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( 1 x. sum_ k e. ( 0 ... 0 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) |
| 12 |
5 11
|
eqeq12d |
|- ( x = 0 -> ( ( S ` x ) = ( ( ! ` x ) x. sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <-> 1 = ( 1 x. sum_ k e. ( 0 ... 0 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
| 13 |
|
fv0p1e1 |
|- ( x = 0 -> ( S ` ( x + 1 ) ) = ( S ` 1 ) ) |
| 14 |
1 2
|
subfac1 |
|- ( S ` 1 ) = 0 |
| 15 |
13 14
|
eqtrdi |
|- ( x = 0 -> ( S ` ( x + 1 ) ) = 0 ) |
| 16 |
|
fv0p1e1 |
|- ( x = 0 -> ( ! ` ( x + 1 ) ) = ( ! ` 1 ) ) |
| 17 |
|
fac1 |
|- ( ! ` 1 ) = 1 |
| 18 |
16 17
|
eqtrdi |
|- ( x = 0 -> ( ! ` ( x + 1 ) ) = 1 ) |
| 19 |
|
oveq1 |
|- ( x = 0 -> ( x + 1 ) = ( 0 + 1 ) ) |
| 20 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 21 |
19 20
|
eqtrdi |
|- ( x = 0 -> ( x + 1 ) = 1 ) |
| 22 |
21
|
oveq2d |
|- ( x = 0 -> ( 0 ... ( x + 1 ) ) = ( 0 ... 1 ) ) |
| 23 |
22
|
sumeq1d |
|- ( x = 0 -> sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = sum_ k e. ( 0 ... 1 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) |
| 24 |
18 23
|
oveq12d |
|- ( x = 0 -> ( ( ! ` ( x + 1 ) ) x. sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( 1 x. sum_ k e. ( 0 ... 1 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) |
| 25 |
15 24
|
eqeq12d |
|- ( x = 0 -> ( ( S ` ( x + 1 ) ) = ( ( ! ` ( x + 1 ) ) x. sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <-> 0 = ( 1 x. sum_ k e. ( 0 ... 1 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
| 26 |
12 25
|
anbi12d |
|- ( x = 0 -> ( ( ( S ` x ) = ( ( ! ` x ) x. sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( x + 1 ) ) = ( ( ! ` ( x + 1 ) ) x. sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) <-> ( 1 = ( 1 x. sum_ k e. ( 0 ... 0 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ 0 = ( 1 x. sum_ k e. ( 0 ... 1 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) ) |
| 27 |
|
fveq2 |
|- ( x = m -> ( S ` x ) = ( S ` m ) ) |
| 28 |
|
fveq2 |
|- ( x = m -> ( ! ` x ) = ( ! ` m ) ) |
| 29 |
|
oveq2 |
|- ( x = m -> ( 0 ... x ) = ( 0 ... m ) ) |
| 30 |
29
|
sumeq1d |
|- ( x = m -> sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) |
| 31 |
28 30
|
oveq12d |
|- ( x = m -> ( ( ! ` x ) x. sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) |
| 32 |
27 31
|
eqeq12d |
|- ( x = m -> ( ( S ` x ) = ( ( ! ` x ) x. sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <-> ( S ` m ) = ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
| 33 |
|
fvoveq1 |
|- ( x = m -> ( S ` ( x + 1 ) ) = ( S ` ( m + 1 ) ) ) |
| 34 |
|
fvoveq1 |
|- ( x = m -> ( ! ` ( x + 1 ) ) = ( ! ` ( m + 1 ) ) ) |
| 35 |
|
oveq1 |
|- ( x = m -> ( x + 1 ) = ( m + 1 ) ) |
| 36 |
35
|
oveq2d |
|- ( x = m -> ( 0 ... ( x + 1 ) ) = ( 0 ... ( m + 1 ) ) ) |
| 37 |
36
|
sumeq1d |
|- ( x = m -> sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) |
| 38 |
34 37
|
oveq12d |
|- ( x = m -> ( ( ! ` ( x + 1 ) ) x. sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) |
| 39 |
33 38
|
eqeq12d |
|- ( x = m -> ( ( S ` ( x + 1 ) ) = ( ( ! ` ( x + 1 ) ) x. sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <-> ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
| 40 |
32 39
|
anbi12d |
|- ( x = m -> ( ( ( S ` x ) = ( ( ! ` x ) x. sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( x + 1 ) ) = ( ( ! ` ( x + 1 ) ) x. sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) <-> ( ( S ` m ) = ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) ) |
| 41 |
|
fveq2 |
|- ( x = ( m + 1 ) -> ( S ` x ) = ( S ` ( m + 1 ) ) ) |
| 42 |
|
fveq2 |
|- ( x = ( m + 1 ) -> ( ! ` x ) = ( ! ` ( m + 1 ) ) ) |
| 43 |
|
oveq2 |
|- ( x = ( m + 1 ) -> ( 0 ... x ) = ( 0 ... ( m + 1 ) ) ) |
| 44 |
43
|
sumeq1d |
|- ( x = ( m + 1 ) -> sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) |
| 45 |
42 44
|
oveq12d |
|- ( x = ( m + 1 ) -> ( ( ! ` x ) x. sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) |
| 46 |
41 45
|
eqeq12d |
|- ( x = ( m + 1 ) -> ( ( S ` x ) = ( ( ! ` x ) x. sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <-> ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
| 47 |
|
fvoveq1 |
|- ( x = ( m + 1 ) -> ( S ` ( x + 1 ) ) = ( S ` ( ( m + 1 ) + 1 ) ) ) |
| 48 |
|
fvoveq1 |
|- ( x = ( m + 1 ) -> ( ! ` ( x + 1 ) ) = ( ! ` ( ( m + 1 ) + 1 ) ) ) |
| 49 |
|
oveq1 |
|- ( x = ( m + 1 ) -> ( x + 1 ) = ( ( m + 1 ) + 1 ) ) |
| 50 |
49
|
oveq2d |
|- ( x = ( m + 1 ) -> ( 0 ... ( x + 1 ) ) = ( 0 ... ( ( m + 1 ) + 1 ) ) ) |
| 51 |
50
|
sumeq1d |
|- ( x = ( m + 1 ) -> sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = sum_ k e. ( 0 ... ( ( m + 1 ) + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) |
| 52 |
48 51
|
oveq12d |
|- ( x = ( m + 1 ) -> ( ( ! ` ( x + 1 ) ) x. sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... ( ( m + 1 ) + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) |
| 53 |
47 52
|
eqeq12d |
|- ( x = ( m + 1 ) -> ( ( S ` ( x + 1 ) ) = ( ( ! ` ( x + 1 ) ) x. sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <-> ( S ` ( ( m + 1 ) + 1 ) ) = ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... ( ( m + 1 ) + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
| 54 |
46 53
|
anbi12d |
|- ( x = ( m + 1 ) -> ( ( ( S ` x ) = ( ( ! ` x ) x. sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( x + 1 ) ) = ( ( ! ` ( x + 1 ) ) x. sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) <-> ( ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( ( m + 1 ) + 1 ) ) = ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... ( ( m + 1 ) + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) ) |
| 55 |
|
fveq2 |
|- ( x = N -> ( S ` x ) = ( S ` N ) ) |
| 56 |
|
fveq2 |
|- ( x = N -> ( ! ` x ) = ( ! ` N ) ) |
| 57 |
|
oveq2 |
|- ( x = N -> ( 0 ... x ) = ( 0 ... N ) ) |
| 58 |
57
|
sumeq1d |
|- ( x = N -> sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) |
| 59 |
56 58
|
oveq12d |
|- ( x = N -> ( ( ! ` x ) x. sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ! ` N ) x. sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) |
| 60 |
55 59
|
eqeq12d |
|- ( x = N -> ( ( S ` x ) = ( ( ! ` x ) x. sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <-> ( S ` N ) = ( ( ! ` N ) x. sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
| 61 |
|
fvoveq1 |
|- ( x = N -> ( S ` ( x + 1 ) ) = ( S ` ( N + 1 ) ) ) |
| 62 |
|
fvoveq1 |
|- ( x = N -> ( ! ` ( x + 1 ) ) = ( ! ` ( N + 1 ) ) ) |
| 63 |
|
oveq1 |
|- ( x = N -> ( x + 1 ) = ( N + 1 ) ) |
| 64 |
63
|
oveq2d |
|- ( x = N -> ( 0 ... ( x + 1 ) ) = ( 0 ... ( N + 1 ) ) ) |
| 65 |
64
|
sumeq1d |
|- ( x = N -> sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = sum_ k e. ( 0 ... ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) |
| 66 |
62 65
|
oveq12d |
|- ( x = N -> ( ( ! ` ( x + 1 ) ) x. sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ! ` ( N + 1 ) ) x. sum_ k e. ( 0 ... ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) |
| 67 |
61 66
|
eqeq12d |
|- ( x = N -> ( ( S ` ( x + 1 ) ) = ( ( ! ` ( x + 1 ) ) x. sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <-> ( S ` ( N + 1 ) ) = ( ( ! ` ( N + 1 ) ) x. sum_ k e. ( 0 ... ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
| 68 |
60 67
|
anbi12d |
|- ( x = N -> ( ( ( S ` x ) = ( ( ! ` x ) x. sum_ k e. ( 0 ... x ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( x + 1 ) ) = ( ( ! ` ( x + 1 ) ) x. sum_ k e. ( 0 ... ( x + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) <-> ( ( S ` N ) = ( ( ! ` N ) x. sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( N + 1 ) ) = ( ( ! ` ( N + 1 ) ) x. sum_ k e. ( 0 ... ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) ) |
| 69 |
|
0z |
|- 0 e. ZZ |
| 70 |
|
ax-1cn |
|- 1 e. CC |
| 71 |
|
oveq2 |
|- ( k = 0 -> ( -u 1 ^ k ) = ( -u 1 ^ 0 ) ) |
| 72 |
|
neg1cn |
|- -u 1 e. CC |
| 73 |
|
exp0 |
|- ( -u 1 e. CC -> ( -u 1 ^ 0 ) = 1 ) |
| 74 |
72 73
|
ax-mp |
|- ( -u 1 ^ 0 ) = 1 |
| 75 |
71 74
|
eqtrdi |
|- ( k = 0 -> ( -u 1 ^ k ) = 1 ) |
| 76 |
|
fveq2 |
|- ( k = 0 -> ( ! ` k ) = ( ! ` 0 ) ) |
| 77 |
76 7
|
eqtrdi |
|- ( k = 0 -> ( ! ` k ) = 1 ) |
| 78 |
75 77
|
oveq12d |
|- ( k = 0 -> ( ( -u 1 ^ k ) / ( ! ` k ) ) = ( 1 / 1 ) ) |
| 79 |
70
|
div1i |
|- ( 1 / 1 ) = 1 |
| 80 |
78 79
|
eqtrdi |
|- ( k = 0 -> ( ( -u 1 ^ k ) / ( ! ` k ) ) = 1 ) |
| 81 |
80
|
fsum1 |
|- ( ( 0 e. ZZ /\ 1 e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = 1 ) |
| 82 |
69 70 81
|
mp2an |
|- sum_ k e. ( 0 ... 0 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = 1 |
| 83 |
82
|
oveq2i |
|- ( 1 x. sum_ k e. ( 0 ... 0 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( 1 x. 1 ) |
| 84 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 85 |
83 84
|
eqtr2i |
|- 1 = ( 1 x. sum_ k e. ( 0 ... 0 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) |
| 86 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 87 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 88 |
|
oveq2 |
|- ( k = 1 -> ( -u 1 ^ k ) = ( -u 1 ^ 1 ) ) |
| 89 |
|
exp1 |
|- ( -u 1 e. CC -> ( -u 1 ^ 1 ) = -u 1 ) |
| 90 |
72 89
|
ax-mp |
|- ( -u 1 ^ 1 ) = -u 1 |
| 91 |
88 90
|
eqtrdi |
|- ( k = 1 -> ( -u 1 ^ k ) = -u 1 ) |
| 92 |
|
fveq2 |
|- ( k = 1 -> ( ! ` k ) = ( ! ` 1 ) ) |
| 93 |
92 17
|
eqtrdi |
|- ( k = 1 -> ( ! ` k ) = 1 ) |
| 94 |
91 93
|
oveq12d |
|- ( k = 1 -> ( ( -u 1 ^ k ) / ( ! ` k ) ) = ( -u 1 / 1 ) ) |
| 95 |
72
|
div1i |
|- ( -u 1 / 1 ) = -u 1 |
| 96 |
94 95
|
eqtrdi |
|- ( k = 1 -> ( ( -u 1 ^ k ) / ( ! ` k ) ) = -u 1 ) |
| 97 |
|
neg1rr |
|- -u 1 e. RR |
| 98 |
|
reexpcl |
|- ( ( -u 1 e. RR /\ k e. NN0 ) -> ( -u 1 ^ k ) e. RR ) |
| 99 |
97 98
|
mpan |
|- ( k e. NN0 -> ( -u 1 ^ k ) e. RR ) |
| 100 |
|
faccl |
|- ( k e. NN0 -> ( ! ` k ) e. NN ) |
| 101 |
99 100
|
nndivred |
|- ( k e. NN0 -> ( ( -u 1 ^ k ) / ( ! ` k ) ) e. RR ) |
| 102 |
101
|
recnd |
|- ( k e. NN0 -> ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) |
| 103 |
102
|
adantl |
|- ( ( T. /\ k e. NN0 ) -> ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) |
| 104 |
|
0nn0 |
|- 0 e. NN0 |
| 105 |
104 82
|
pm3.2i |
|- ( 0 e. NN0 /\ sum_ k e. ( 0 ... 0 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = 1 ) |
| 106 |
105
|
a1i |
|- ( T. -> ( 0 e. NN0 /\ sum_ k e. ( 0 ... 0 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = 1 ) ) |
| 107 |
|
1pneg1e0 |
|- ( 1 + -u 1 ) = 0 |
| 108 |
107
|
a1i |
|- ( T. -> ( 1 + -u 1 ) = 0 ) |
| 109 |
86 87 96 103 106 108
|
fsump1i |
|- ( T. -> ( 1 e. NN0 /\ sum_ k e. ( 0 ... 1 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = 0 ) ) |
| 110 |
109
|
mptru |
|- ( 1 e. NN0 /\ sum_ k e. ( 0 ... 1 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = 0 ) |
| 111 |
110
|
simpri |
|- sum_ k e. ( 0 ... 1 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = 0 |
| 112 |
111
|
oveq2i |
|- ( 1 x. sum_ k e. ( 0 ... 1 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( 1 x. 0 ) |
| 113 |
70
|
mul01i |
|- ( 1 x. 0 ) = 0 |
| 114 |
112 113
|
eqtr2i |
|- 0 = ( 1 x. sum_ k e. ( 0 ... 1 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) |
| 115 |
85 114
|
pm3.2i |
|- ( 1 = ( 1 x. sum_ k e. ( 0 ... 0 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ 0 = ( 1 x. sum_ k e. ( 0 ... 1 ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) |
| 116 |
|
simpr |
|- ( ( ( S ` m ) = ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) -> ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) |
| 117 |
116
|
a1i |
|- ( m e. NN0 -> ( ( ( S ` m ) = ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) -> ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
| 118 |
|
oveq12 |
|- ( ( ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` m ) = ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) -> ( ( S ` ( m + 1 ) ) + ( S ` m ) ) = ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
| 119 |
118
|
ancoms |
|- ( ( ( S ` m ) = ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) -> ( ( S ` ( m + 1 ) ) + ( S ` m ) ) = ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
| 120 |
119
|
oveq2d |
|- ( ( ( S ` m ) = ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) -> ( ( m + 1 ) x. ( ( S ` ( m + 1 ) ) + ( S ` m ) ) ) = ( ( m + 1 ) x. ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) ) |
| 121 |
|
nn0p1nn |
|- ( m e. NN0 -> ( m + 1 ) e. NN ) |
| 122 |
1 2
|
subfacp1 |
|- ( ( m + 1 ) e. NN -> ( S ` ( ( m + 1 ) + 1 ) ) = ( ( m + 1 ) x. ( ( S ` ( m + 1 ) ) + ( S ` ( ( m + 1 ) - 1 ) ) ) ) ) |
| 123 |
121 122
|
syl |
|- ( m e. NN0 -> ( S ` ( ( m + 1 ) + 1 ) ) = ( ( m + 1 ) x. ( ( S ` ( m + 1 ) ) + ( S ` ( ( m + 1 ) - 1 ) ) ) ) ) |
| 124 |
|
nn0cn |
|- ( m e. NN0 -> m e. CC ) |
| 125 |
|
pncan |
|- ( ( m e. CC /\ 1 e. CC ) -> ( ( m + 1 ) - 1 ) = m ) |
| 126 |
124 70 125
|
sylancl |
|- ( m e. NN0 -> ( ( m + 1 ) - 1 ) = m ) |
| 127 |
126
|
fveq2d |
|- ( m e. NN0 -> ( S ` ( ( m + 1 ) - 1 ) ) = ( S ` m ) ) |
| 128 |
127
|
oveq2d |
|- ( m e. NN0 -> ( ( S ` ( m + 1 ) ) + ( S ` ( ( m + 1 ) - 1 ) ) ) = ( ( S ` ( m + 1 ) ) + ( S ` m ) ) ) |
| 129 |
128
|
oveq2d |
|- ( m e. NN0 -> ( ( m + 1 ) x. ( ( S ` ( m + 1 ) ) + ( S ` ( ( m + 1 ) - 1 ) ) ) ) = ( ( m + 1 ) x. ( ( S ` ( m + 1 ) ) + ( S ` m ) ) ) ) |
| 130 |
123 129
|
eqtrd |
|- ( m e. NN0 -> ( S ` ( ( m + 1 ) + 1 ) ) = ( ( m + 1 ) x. ( ( S ` ( m + 1 ) ) + ( S ` m ) ) ) ) |
| 131 |
|
peano2nn0 |
|- ( m e. NN0 -> ( m + 1 ) e. NN0 ) |
| 132 |
|
peano2nn0 |
|- ( ( m + 1 ) e. NN0 -> ( ( m + 1 ) + 1 ) e. NN0 ) |
| 133 |
131 132
|
syl |
|- ( m e. NN0 -> ( ( m + 1 ) + 1 ) e. NN0 ) |
| 134 |
|
faccl |
|- ( ( ( m + 1 ) + 1 ) e. NN0 -> ( ! ` ( ( m + 1 ) + 1 ) ) e. NN ) |
| 135 |
133 134
|
syl |
|- ( m e. NN0 -> ( ! ` ( ( m + 1 ) + 1 ) ) e. NN ) |
| 136 |
135
|
nncnd |
|- ( m e. NN0 -> ( ! ` ( ( m + 1 ) + 1 ) ) e. CC ) |
| 137 |
|
fzfid |
|- ( m e. NN0 -> ( 0 ... ( m + 1 ) ) e. Fin ) |
| 138 |
|
elfznn0 |
|- ( k e. ( 0 ... ( m + 1 ) ) -> k e. NN0 ) |
| 139 |
138
|
adantl |
|- ( ( m e. NN0 /\ k e. ( 0 ... ( m + 1 ) ) ) -> k e. NN0 ) |
| 140 |
139 102
|
syl |
|- ( ( m e. NN0 /\ k e. ( 0 ... ( m + 1 ) ) ) -> ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) |
| 141 |
137 140
|
fsumcl |
|- ( m e. NN0 -> sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) |
| 142 |
|
expcl |
|- ( ( -u 1 e. CC /\ ( ( m + 1 ) + 1 ) e. NN0 ) -> ( -u 1 ^ ( ( m + 1 ) + 1 ) ) e. CC ) |
| 143 |
72 133 142
|
sylancr |
|- ( m e. NN0 -> ( -u 1 ^ ( ( m + 1 ) + 1 ) ) e. CC ) |
| 144 |
135
|
nnne0d |
|- ( m e. NN0 -> ( ! ` ( ( m + 1 ) + 1 ) ) =/= 0 ) |
| 145 |
143 136 144
|
divcld |
|- ( m e. NN0 -> ( ( -u 1 ^ ( ( m + 1 ) + 1 ) ) / ( ! ` ( ( m + 1 ) + 1 ) ) ) e. CC ) |
| 146 |
136 141 145
|
adddid |
|- ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) x. ( sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + ( ( -u 1 ^ ( ( m + 1 ) + 1 ) ) / ( ! ` ( ( m + 1 ) + 1 ) ) ) ) ) = ( ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` ( ( m + 1 ) + 1 ) ) x. ( ( -u 1 ^ ( ( m + 1 ) + 1 ) ) / ( ! ` ( ( m + 1 ) + 1 ) ) ) ) ) ) |
| 147 |
|
id |
|- ( m e. NN0 -> m e. NN0 ) |
| 148 |
147 86
|
eleqtrdi |
|- ( m e. NN0 -> m e. ( ZZ>= ` 0 ) ) |
| 149 |
|
oveq2 |
|- ( k = ( m + 1 ) -> ( -u 1 ^ k ) = ( -u 1 ^ ( m + 1 ) ) ) |
| 150 |
|
fveq2 |
|- ( k = ( m + 1 ) -> ( ! ` k ) = ( ! ` ( m + 1 ) ) ) |
| 151 |
149 150
|
oveq12d |
|- ( k = ( m + 1 ) -> ( ( -u 1 ^ k ) / ( ! ` k ) ) = ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) |
| 152 |
148 140 151
|
fsump1 |
|- ( m e. NN0 -> sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = ( sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) ) |
| 153 |
152
|
oveq2d |
|- ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ! ` ( ( m + 1 ) + 1 ) ) x. ( sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) ) ) |
| 154 |
|
fzfid |
|- ( m e. NN0 -> ( 0 ... m ) e. Fin ) |
| 155 |
|
elfznn0 |
|- ( k e. ( 0 ... m ) -> k e. NN0 ) |
| 156 |
155
|
adantl |
|- ( ( m e. NN0 /\ k e. ( 0 ... m ) ) -> k e. NN0 ) |
| 157 |
156 102
|
syl |
|- ( ( m e. NN0 /\ k e. ( 0 ... m ) ) -> ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) |
| 158 |
154 157
|
fsumcl |
|- ( m e. NN0 -> sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) |
| 159 |
|
expcl |
|- ( ( -u 1 e. CC /\ ( m + 1 ) e. NN0 ) -> ( -u 1 ^ ( m + 1 ) ) e. CC ) |
| 160 |
72 131 159
|
sylancr |
|- ( m e. NN0 -> ( -u 1 ^ ( m + 1 ) ) e. CC ) |
| 161 |
|
faccl |
|- ( ( m + 1 ) e. NN0 -> ( ! ` ( m + 1 ) ) e. NN ) |
| 162 |
131 161
|
syl |
|- ( m e. NN0 -> ( ! ` ( m + 1 ) ) e. NN ) |
| 163 |
162
|
nncnd |
|- ( m e. NN0 -> ( ! ` ( m + 1 ) ) e. CC ) |
| 164 |
162
|
nnne0d |
|- ( m e. NN0 -> ( ! ` ( m + 1 ) ) =/= 0 ) |
| 165 |
160 163 164
|
divcld |
|- ( m e. NN0 -> ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) e. CC ) |
| 166 |
136 158 165
|
adddid |
|- ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) x. ( sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) ) = ( ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` ( ( m + 1 ) + 1 ) ) x. ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) ) ) |
| 167 |
|
facp1 |
|- ( ( m + 1 ) e. NN0 -> ( ! ` ( ( m + 1 ) + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) ) |
| 168 |
131 167
|
syl |
|- ( m e. NN0 -> ( ! ` ( ( m + 1 ) + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) ) |
| 169 |
|
facp1 |
|- ( m e. NN0 -> ( ! ` ( m + 1 ) ) = ( ( ! ` m ) x. ( m + 1 ) ) ) |
| 170 |
|
faccl |
|- ( m e. NN0 -> ( ! ` m ) e. NN ) |
| 171 |
170
|
nncnd |
|- ( m e. NN0 -> ( ! ` m ) e. CC ) |
| 172 |
121
|
nncnd |
|- ( m e. NN0 -> ( m + 1 ) e. CC ) |
| 173 |
171 172
|
mulcomd |
|- ( m e. NN0 -> ( ( ! ` m ) x. ( m + 1 ) ) = ( ( m + 1 ) x. ( ! ` m ) ) ) |
| 174 |
169 173
|
eqtrd |
|- ( m e. NN0 -> ( ! ` ( m + 1 ) ) = ( ( m + 1 ) x. ( ! ` m ) ) ) |
| 175 |
174
|
oveq1d |
|- ( m e. NN0 -> ( ( ! ` ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) = ( ( ( m + 1 ) x. ( ! ` m ) ) x. ( ( m + 1 ) + 1 ) ) ) |
| 176 |
133
|
nn0cnd |
|- ( m e. NN0 -> ( ( m + 1 ) + 1 ) e. CC ) |
| 177 |
172 171 176
|
mulassd |
|- ( m e. NN0 -> ( ( ( m + 1 ) x. ( ! ` m ) ) x. ( ( m + 1 ) + 1 ) ) = ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) ) |
| 178 |
168 175 177
|
3eqtrd |
|- ( m e. NN0 -> ( ! ` ( ( m + 1 ) + 1 ) ) = ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) ) |
| 179 |
178
|
oveq1d |
|- ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) |
| 180 |
136 160 163 164
|
div12d |
|- ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) x. ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) = ( ( -u 1 ^ ( m + 1 ) ) x. ( ( ! ` ( ( m + 1 ) + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) ) |
| 181 |
168
|
oveq1d |
|- ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) / ( ! ` ( m + 1 ) ) ) = ( ( ( ! ` ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) |
| 182 |
176 163 164
|
divcan3d |
|- ( m e. NN0 -> ( ( ( ! ` ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) / ( ! ` ( m + 1 ) ) ) = ( ( m + 1 ) + 1 ) ) |
| 183 |
181 182
|
eqtrd |
|- ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) / ( ! ` ( m + 1 ) ) ) = ( ( m + 1 ) + 1 ) ) |
| 184 |
183
|
oveq2d |
|- ( m e. NN0 -> ( ( -u 1 ^ ( m + 1 ) ) x. ( ( ! ` ( ( m + 1 ) + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) = ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) ) |
| 185 |
180 184
|
eqtrd |
|- ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) x. ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) = ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) ) |
| 186 |
179 185
|
oveq12d |
|- ( m e. NN0 -> ( ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` ( ( m + 1 ) + 1 ) ) x. ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) ) = ( ( ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) ) ) |
| 187 |
153 166 186
|
3eqtrd |
|- ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) ) ) |
| 188 |
143 136 144
|
divcan2d |
|- ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) x. ( ( -u 1 ^ ( ( m + 1 ) + 1 ) ) / ( ! ` ( ( m + 1 ) + 1 ) ) ) ) = ( -u 1 ^ ( ( m + 1 ) + 1 ) ) ) |
| 189 |
187 188
|
oveq12d |
|- ( m e. NN0 -> ( ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` ( ( m + 1 ) + 1 ) ) x. ( ( -u 1 ^ ( ( m + 1 ) + 1 ) ) / ( ! ` ( ( m + 1 ) + 1 ) ) ) ) ) = ( ( ( ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) ) + ( -u 1 ^ ( ( m + 1 ) + 1 ) ) ) ) |
| 190 |
171 176
|
mulcld |
|- ( m e. NN0 -> ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) e. CC ) |
| 191 |
172 190 158
|
mulassd |
|- ( m e. NN0 -> ( ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( m + 1 ) x. ( ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
| 192 |
72
|
a1i |
|- ( m e. NN0 -> -u 1 e. CC ) |
| 193 |
160 176 192
|
adddid |
|- ( m e. NN0 -> ( ( -u 1 ^ ( m + 1 ) ) x. ( ( ( m + 1 ) + 1 ) + -u 1 ) ) = ( ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) + ( ( -u 1 ^ ( m + 1 ) ) x. -u 1 ) ) ) |
| 194 |
|
negsub |
|- ( ( ( ( m + 1 ) + 1 ) e. CC /\ 1 e. CC ) -> ( ( ( m + 1 ) + 1 ) + -u 1 ) = ( ( ( m + 1 ) + 1 ) - 1 ) ) |
| 195 |
176 70 194
|
sylancl |
|- ( m e. NN0 -> ( ( ( m + 1 ) + 1 ) + -u 1 ) = ( ( ( m + 1 ) + 1 ) - 1 ) ) |
| 196 |
|
pncan |
|- ( ( ( m + 1 ) e. CC /\ 1 e. CC ) -> ( ( ( m + 1 ) + 1 ) - 1 ) = ( m + 1 ) ) |
| 197 |
172 70 196
|
sylancl |
|- ( m e. NN0 -> ( ( ( m + 1 ) + 1 ) - 1 ) = ( m + 1 ) ) |
| 198 |
195 197
|
eqtrd |
|- ( m e. NN0 -> ( ( ( m + 1 ) + 1 ) + -u 1 ) = ( m + 1 ) ) |
| 199 |
198
|
oveq2d |
|- ( m e. NN0 -> ( ( -u 1 ^ ( m + 1 ) ) x. ( ( ( m + 1 ) + 1 ) + -u 1 ) ) = ( ( -u 1 ^ ( m + 1 ) ) x. ( m + 1 ) ) ) |
| 200 |
193 199
|
eqtr3d |
|- ( m e. NN0 -> ( ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) + ( ( -u 1 ^ ( m + 1 ) ) x. -u 1 ) ) = ( ( -u 1 ^ ( m + 1 ) ) x. ( m + 1 ) ) ) |
| 201 |
|
expp1 |
|- ( ( -u 1 e. CC /\ ( m + 1 ) e. NN0 ) -> ( -u 1 ^ ( ( m + 1 ) + 1 ) ) = ( ( -u 1 ^ ( m + 1 ) ) x. -u 1 ) ) |
| 202 |
72 131 201
|
sylancr |
|- ( m e. NN0 -> ( -u 1 ^ ( ( m + 1 ) + 1 ) ) = ( ( -u 1 ^ ( m + 1 ) ) x. -u 1 ) ) |
| 203 |
202
|
oveq2d |
|- ( m e. NN0 -> ( ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) + ( -u 1 ^ ( ( m + 1 ) + 1 ) ) ) = ( ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) + ( ( -u 1 ^ ( m + 1 ) ) x. -u 1 ) ) ) |
| 204 |
172 160
|
mulcomd |
|- ( m e. NN0 -> ( ( m + 1 ) x. ( -u 1 ^ ( m + 1 ) ) ) = ( ( -u 1 ^ ( m + 1 ) ) x. ( m + 1 ) ) ) |
| 205 |
200 203 204
|
3eqtr4d |
|- ( m e. NN0 -> ( ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) + ( -u 1 ^ ( ( m + 1 ) + 1 ) ) ) = ( ( m + 1 ) x. ( -u 1 ^ ( m + 1 ) ) ) ) |
| 206 |
191 205
|
oveq12d |
|- ( m e. NN0 -> ( ( ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) + ( -u 1 ^ ( ( m + 1 ) + 1 ) ) ) ) = ( ( ( m + 1 ) x. ( ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) + ( ( m + 1 ) x. ( -u 1 ^ ( m + 1 ) ) ) ) ) |
| 207 |
172 190
|
mulcld |
|- ( m e. NN0 -> ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) e. CC ) |
| 208 |
207 158
|
mulcld |
|- ( m e. NN0 -> ( ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) e. CC ) |
| 209 |
160 176
|
mulcld |
|- ( m e. NN0 -> ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) e. CC ) |
| 210 |
208 209 143
|
addassd |
|- ( m e. NN0 -> ( ( ( ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) ) + ( -u 1 ^ ( ( m + 1 ) + 1 ) ) ) = ( ( ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) + ( -u 1 ^ ( ( m + 1 ) + 1 ) ) ) ) ) |
| 211 |
190 158
|
mulcld |
|- ( m e. NN0 -> ( ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) e. CC ) |
| 212 |
172 211 160
|
adddid |
|- ( m e. NN0 -> ( ( m + 1 ) x. ( ( ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( -u 1 ^ ( m + 1 ) ) ) ) = ( ( ( m + 1 ) x. ( ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) + ( ( m + 1 ) x. ( -u 1 ^ ( m + 1 ) ) ) ) ) |
| 213 |
206 210 212
|
3eqtr4d |
|- ( m e. NN0 -> ( ( ( ( ( m + 1 ) x. ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( -u 1 ^ ( m + 1 ) ) x. ( ( m + 1 ) + 1 ) ) ) + ( -u 1 ^ ( ( m + 1 ) + 1 ) ) ) = ( ( m + 1 ) x. ( ( ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( -u 1 ^ ( m + 1 ) ) ) ) ) |
| 214 |
146 189 213
|
3eqtrd |
|- ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) x. ( sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + ( ( -u 1 ^ ( ( m + 1 ) + 1 ) ) / ( ! ` ( ( m + 1 ) + 1 ) ) ) ) ) = ( ( m + 1 ) x. ( ( ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( -u 1 ^ ( m + 1 ) ) ) ) ) |
| 215 |
131 86
|
eleqtrdi |
|- ( m e. NN0 -> ( m + 1 ) e. ( ZZ>= ` 0 ) ) |
| 216 |
|
elfznn0 |
|- ( k e. ( 0 ... ( ( m + 1 ) + 1 ) ) -> k e. NN0 ) |
| 217 |
216
|
adantl |
|- ( ( m e. NN0 /\ k e. ( 0 ... ( ( m + 1 ) + 1 ) ) ) -> k e. NN0 ) |
| 218 |
217 102
|
syl |
|- ( ( m e. NN0 /\ k e. ( 0 ... ( ( m + 1 ) + 1 ) ) ) -> ( ( -u 1 ^ k ) / ( ! ` k ) ) e. CC ) |
| 219 |
|
oveq2 |
|- ( k = ( ( m + 1 ) + 1 ) -> ( -u 1 ^ k ) = ( -u 1 ^ ( ( m + 1 ) + 1 ) ) ) |
| 220 |
|
fveq2 |
|- ( k = ( ( m + 1 ) + 1 ) -> ( ! ` k ) = ( ! ` ( ( m + 1 ) + 1 ) ) ) |
| 221 |
219 220
|
oveq12d |
|- ( k = ( ( m + 1 ) + 1 ) -> ( ( -u 1 ^ k ) / ( ! ` k ) ) = ( ( -u 1 ^ ( ( m + 1 ) + 1 ) ) / ( ! ` ( ( m + 1 ) + 1 ) ) ) ) |
| 222 |
215 218 221
|
fsump1 |
|- ( m e. NN0 -> sum_ k e. ( 0 ... ( ( m + 1 ) + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) = ( sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + ( ( -u 1 ^ ( ( m + 1 ) + 1 ) ) / ( ! ` ( ( m + 1 ) + 1 ) ) ) ) ) |
| 223 |
222
|
oveq2d |
|- ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... ( ( m + 1 ) + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ! ` ( ( m + 1 ) + 1 ) ) x. ( sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + ( ( -u 1 ^ ( ( m + 1 ) + 1 ) ) / ( ! ` ( ( m + 1 ) + 1 ) ) ) ) ) ) |
| 224 |
163 158
|
mulcld |
|- ( m e. NN0 -> ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) e. CC ) |
| 225 |
171 158
|
mulcld |
|- ( m e. NN0 -> ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) e. CC ) |
| 226 |
224 160 225
|
add32d |
|- ( m e. NN0 -> ( ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( -u 1 ^ ( m + 1 ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) = ( ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) + ( -u 1 ^ ( m + 1 ) ) ) ) |
| 227 |
152
|
oveq2d |
|- ( m e. NN0 -> ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ! ` ( m + 1 ) ) x. ( sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) ) ) |
| 228 |
163 158 165
|
adddid |
|- ( m e. NN0 -> ( ( ! ` ( m + 1 ) ) x. ( sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) + ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) ) = ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` ( m + 1 ) ) x. ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) ) ) |
| 229 |
160 163 164
|
divcan2d |
|- ( m e. NN0 -> ( ( ! ` ( m + 1 ) ) x. ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) = ( -u 1 ^ ( m + 1 ) ) ) |
| 230 |
229
|
oveq2d |
|- ( m e. NN0 -> ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` ( m + 1 ) ) x. ( ( -u 1 ^ ( m + 1 ) ) / ( ! ` ( m + 1 ) ) ) ) ) = ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( -u 1 ^ ( m + 1 ) ) ) ) |
| 231 |
227 228 230
|
3eqtrd |
|- ( m e. NN0 -> ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( -u 1 ^ ( m + 1 ) ) ) ) |
| 232 |
231
|
oveq1d |
|- ( m e. NN0 -> ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) = ( ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( -u 1 ^ ( m + 1 ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
| 233 |
70
|
a1i |
|- ( m e. NN0 -> 1 e. CC ) |
| 234 |
171 172 233
|
adddid |
|- ( m e. NN0 -> ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) = ( ( ( ! ` m ) x. ( m + 1 ) ) + ( ( ! ` m ) x. 1 ) ) ) |
| 235 |
169
|
eqcomd |
|- ( m e. NN0 -> ( ( ! ` m ) x. ( m + 1 ) ) = ( ! ` ( m + 1 ) ) ) |
| 236 |
171
|
mulridd |
|- ( m e. NN0 -> ( ( ! ` m ) x. 1 ) = ( ! ` m ) ) |
| 237 |
235 236
|
oveq12d |
|- ( m e. NN0 -> ( ( ( ! ` m ) x. ( m + 1 ) ) + ( ( ! ` m ) x. 1 ) ) = ( ( ! ` ( m + 1 ) ) + ( ! ` m ) ) ) |
| 238 |
234 237
|
eqtrd |
|- ( m e. NN0 -> ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) = ( ( ! ` ( m + 1 ) ) + ( ! ` m ) ) ) |
| 239 |
238
|
oveq1d |
|- ( m e. NN0 -> ( ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ( ! ` ( m + 1 ) ) + ( ! ` m ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) |
| 240 |
163 171 158
|
adddird |
|- ( m e. NN0 -> ( ( ( ! ` ( m + 1 ) ) + ( ! ` m ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
| 241 |
239 240
|
eqtrd |
|- ( m e. NN0 -> ( ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
| 242 |
241
|
oveq1d |
|- ( m e. NN0 -> ( ( ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( -u 1 ^ ( m + 1 ) ) ) = ( ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) + ( -u 1 ^ ( m + 1 ) ) ) ) |
| 243 |
226 232 242
|
3eqtr4d |
|- ( m e. NN0 -> ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) = ( ( ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( -u 1 ^ ( m + 1 ) ) ) ) |
| 244 |
243
|
oveq2d |
|- ( m e. NN0 -> ( ( m + 1 ) x. ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) = ( ( m + 1 ) x. ( ( ( ( ! ` m ) x. ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( -u 1 ^ ( m + 1 ) ) ) ) ) |
| 245 |
214 223 244
|
3eqtr4d |
|- ( m e. NN0 -> ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... ( ( m + 1 ) + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) = ( ( m + 1 ) x. ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) ) |
| 246 |
130 245
|
eqeq12d |
|- ( m e. NN0 -> ( ( S ` ( ( m + 1 ) + 1 ) ) = ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... ( ( m + 1 ) + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) <-> ( ( m + 1 ) x. ( ( S ` ( m + 1 ) ) + ( S ` m ) ) ) = ( ( m + 1 ) x. ( ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) + ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) ) ) |
| 247 |
120 246
|
imbitrrid |
|- ( m e. NN0 -> ( ( ( S ` m ) = ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) -> ( S ` ( ( m + 1 ) + 1 ) ) = ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... ( ( m + 1 ) + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
| 248 |
117 247
|
jcad |
|- ( m e. NN0 -> ( ( ( S ` m ) = ( ( ! ` m ) x. sum_ k e. ( 0 ... m ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) -> ( ( S ` ( m + 1 ) ) = ( ( ! ` ( m + 1 ) ) x. sum_ k e. ( 0 ... ( m + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( ( m + 1 ) + 1 ) ) = ( ( ! ` ( ( m + 1 ) + 1 ) ) x. sum_ k e. ( 0 ... ( ( m + 1 ) + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) ) |
| 249 |
26 40 54 68 115 248
|
nn0ind |
|- ( N e. NN0 -> ( ( S ` N ) = ( ( ! ` N ) x. sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) /\ ( S ` ( N + 1 ) ) = ( ( ! ` ( N + 1 ) ) x. sum_ k e. ( 0 ... ( N + 1 ) ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) ) |
| 250 |
249
|
simpld |
|- ( N e. NN0 -> ( S ` N ) = ( ( ! ` N ) x. sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) / ( ! ` k ) ) ) ) |