Step |
Hyp |
Ref |
Expression |
1 |
|
elfzo0 |
|- ( I e. ( 0 ..^ N ) <-> ( I e. NN0 /\ N e. NN /\ I < N ) ) |
2 |
|
elfzo0 |
|- ( J e. ( 0 ..^ N ) <-> ( J e. NN0 /\ N e. NN /\ J < N ) ) |
3 |
|
nn0re |
|- ( I e. NN0 -> I e. RR ) |
4 |
3
|
adantr |
|- ( ( I e. NN0 /\ I < N ) -> I e. RR ) |
5 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
6 |
|
nn0re |
|- ( J e. NN0 -> J e. RR ) |
7 |
|
resubcl |
|- ( ( N e. RR /\ J e. RR ) -> ( N - J ) e. RR ) |
8 |
5 6 7
|
syl2an |
|- ( ( N e. NN /\ J e. NN0 ) -> ( N - J ) e. RR ) |
9 |
8
|
ancoms |
|- ( ( J e. NN0 /\ N e. NN ) -> ( N - J ) e. RR ) |
10 |
9
|
3adant3 |
|- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( N - J ) e. RR ) |
11 |
4 10
|
anim12i |
|- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( I e. RR /\ ( N - J ) e. RR ) ) |
12 |
|
nn0ge0 |
|- ( I e. NN0 -> 0 <_ I ) |
13 |
12
|
adantr |
|- ( ( I e. NN0 /\ I < N ) -> 0 <_ I ) |
14 |
|
posdif |
|- ( ( J e. RR /\ N e. RR ) -> ( J < N <-> 0 < ( N - J ) ) ) |
15 |
6 5 14
|
syl2an |
|- ( ( J e. NN0 /\ N e. NN ) -> ( J < N <-> 0 < ( N - J ) ) ) |
16 |
15
|
biimp3a |
|- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> 0 < ( N - J ) ) |
17 |
13 16
|
anim12i |
|- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( 0 <_ I /\ 0 < ( N - J ) ) ) |
18 |
|
addgegt0 |
|- ( ( ( I e. RR /\ ( N - J ) e. RR ) /\ ( 0 <_ I /\ 0 < ( N - J ) ) ) -> 0 < ( I + ( N - J ) ) ) |
19 |
11 17 18
|
syl2anc |
|- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> 0 < ( I + ( N - J ) ) ) |
20 |
|
nn0cn |
|- ( I e. NN0 -> I e. CC ) |
21 |
20
|
adantr |
|- ( ( I e. NN0 /\ I < N ) -> I e. CC ) |
22 |
21
|
adantr |
|- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> I e. CC ) |
23 |
|
nn0cn |
|- ( J e. NN0 -> J e. CC ) |
24 |
23
|
3ad2ant1 |
|- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> J e. CC ) |
25 |
24
|
adantl |
|- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> J e. CC ) |
26 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
27 |
26
|
3ad2ant2 |
|- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> N e. CC ) |
28 |
27
|
adantl |
|- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> N e. CC ) |
29 |
22 25 28
|
subadd23d |
|- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( ( I - J ) + N ) = ( I + ( N - J ) ) ) |
30 |
19 29
|
breqtrrd |
|- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> 0 < ( ( I - J ) + N ) ) |
31 |
6
|
3ad2ant1 |
|- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> J e. RR ) |
32 |
|
resubcl |
|- ( ( I e. RR /\ J e. RR ) -> ( I - J ) e. RR ) |
33 |
4 31 32
|
syl2an |
|- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( I - J ) e. RR ) |
34 |
5
|
3ad2ant2 |
|- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> N e. RR ) |
35 |
34
|
adantl |
|- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> N e. RR ) |
36 |
33 35
|
possumd |
|- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( 0 < ( ( I - J ) + N ) <-> -u N < ( I - J ) ) ) |
37 |
30 36
|
mpbid |
|- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> -u N < ( I - J ) ) |
38 |
3
|
adantr |
|- ( ( I e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> I e. RR ) |
39 |
34
|
adantl |
|- ( ( I e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> N e. RR ) |
40 |
|
readdcl |
|- ( ( J e. RR /\ N e. RR ) -> ( J + N ) e. RR ) |
41 |
6 5 40
|
syl2an |
|- ( ( J e. NN0 /\ N e. NN ) -> ( J + N ) e. RR ) |
42 |
41
|
3adant3 |
|- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( J + N ) e. RR ) |
43 |
42
|
adantl |
|- ( ( I e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( J + N ) e. RR ) |
44 |
38 39 43
|
3jca |
|- ( ( I e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( I e. RR /\ N e. RR /\ ( J + N ) e. RR ) ) |
45 |
|
nn0ge0 |
|- ( J e. NN0 -> 0 <_ J ) |
46 |
45
|
3ad2ant1 |
|- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> 0 <_ J ) |
47 |
46
|
adantl |
|- ( ( I e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> 0 <_ J ) |
48 |
5 6
|
anim12i |
|- ( ( N e. NN /\ J e. NN0 ) -> ( N e. RR /\ J e. RR ) ) |
49 |
48
|
ancoms |
|- ( ( J e. NN0 /\ N e. NN ) -> ( N e. RR /\ J e. RR ) ) |
50 |
49
|
3adant3 |
|- ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( N e. RR /\ J e. RR ) ) |
51 |
50
|
adantl |
|- ( ( I e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( N e. RR /\ J e. RR ) ) |
52 |
|
addge02 |
|- ( ( N e. RR /\ J e. RR ) -> ( 0 <_ J <-> N <_ ( J + N ) ) ) |
53 |
51 52
|
syl |
|- ( ( I e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( 0 <_ J <-> N <_ ( J + N ) ) ) |
54 |
47 53
|
mpbid |
|- ( ( I e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> N <_ ( J + N ) ) |
55 |
44 54
|
lelttrdi |
|- ( ( I e. NN0 /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( I < N -> I < ( J + N ) ) ) |
56 |
55
|
impancom |
|- ( ( I e. NN0 /\ I < N ) -> ( ( J e. NN0 /\ N e. NN /\ J < N ) -> I < ( J + N ) ) ) |
57 |
56
|
imp |
|- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> I < ( J + N ) ) |
58 |
4
|
adantr |
|- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> I e. RR ) |
59 |
31
|
adantl |
|- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> J e. RR ) |
60 |
58 59 35
|
ltsubadd2d |
|- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( ( I - J ) < N <-> I < ( J + N ) ) ) |
61 |
57 60
|
mpbird |
|- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( I - J ) < N ) |
62 |
37 61
|
jca |
|- ( ( ( I e. NN0 /\ I < N ) /\ ( J e. NN0 /\ N e. NN /\ J < N ) ) -> ( -u N < ( I - J ) /\ ( I - J ) < N ) ) |
63 |
62
|
ex |
|- ( ( I e. NN0 /\ I < N ) -> ( ( J e. NN0 /\ N e. NN /\ J < N ) -> ( -u N < ( I - J ) /\ ( I - J ) < N ) ) ) |
64 |
2 63
|
syl5bi |
|- ( ( I e. NN0 /\ I < N ) -> ( J e. ( 0 ..^ N ) -> ( -u N < ( I - J ) /\ ( I - J ) < N ) ) ) |
65 |
64
|
3adant2 |
|- ( ( I e. NN0 /\ N e. NN /\ I < N ) -> ( J e. ( 0 ..^ N ) -> ( -u N < ( I - J ) /\ ( I - J ) < N ) ) ) |
66 |
1 65
|
sylbi |
|- ( I e. ( 0 ..^ N ) -> ( J e. ( 0 ..^ N ) -> ( -u N < ( I - J ) /\ ( I - J ) < N ) ) ) |
67 |
66
|
imp |
|- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( -u N < ( I - J ) /\ ( I - J ) < N ) ) |