Step |
Hyp |
Ref |
Expression |
1 |
|
subg0.h |
|- H = ( G |`s S ) |
2 |
|
subg0.i |
|- .0. = ( 0g ` G ) |
3 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
4 |
1 3
|
ressplusg |
|- ( S e. ( SubGrp ` G ) -> ( +g ` G ) = ( +g ` H ) ) |
5 |
4
|
oveqd |
|- ( S e. ( SubGrp ` G ) -> ( ( 0g ` H ) ( +g ` G ) ( 0g ` H ) ) = ( ( 0g ` H ) ( +g ` H ) ( 0g ` H ) ) ) |
6 |
1
|
subggrp |
|- ( S e. ( SubGrp ` G ) -> H e. Grp ) |
7 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
8 |
|
eqid |
|- ( 0g ` H ) = ( 0g ` H ) |
9 |
7 8
|
grpidcl |
|- ( H e. Grp -> ( 0g ` H ) e. ( Base ` H ) ) |
10 |
6 9
|
syl |
|- ( S e. ( SubGrp ` G ) -> ( 0g ` H ) e. ( Base ` H ) ) |
11 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
12 |
7 11 8
|
grplid |
|- ( ( H e. Grp /\ ( 0g ` H ) e. ( Base ` H ) ) -> ( ( 0g ` H ) ( +g ` H ) ( 0g ` H ) ) = ( 0g ` H ) ) |
13 |
6 10 12
|
syl2anc |
|- ( S e. ( SubGrp ` G ) -> ( ( 0g ` H ) ( +g ` H ) ( 0g ` H ) ) = ( 0g ` H ) ) |
14 |
5 13
|
eqtrd |
|- ( S e. ( SubGrp ` G ) -> ( ( 0g ` H ) ( +g ` G ) ( 0g ` H ) ) = ( 0g ` H ) ) |
15 |
|
subgrcl |
|- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
16 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
17 |
16
|
subgss |
|- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
18 |
1
|
subgbas |
|- ( S e. ( SubGrp ` G ) -> S = ( Base ` H ) ) |
19 |
10 18
|
eleqtrrd |
|- ( S e. ( SubGrp ` G ) -> ( 0g ` H ) e. S ) |
20 |
17 19
|
sseldd |
|- ( S e. ( SubGrp ` G ) -> ( 0g ` H ) e. ( Base ` G ) ) |
21 |
16 3 2
|
grpid |
|- ( ( G e. Grp /\ ( 0g ` H ) e. ( Base ` G ) ) -> ( ( ( 0g ` H ) ( +g ` G ) ( 0g ` H ) ) = ( 0g ` H ) <-> .0. = ( 0g ` H ) ) ) |
22 |
15 20 21
|
syl2anc |
|- ( S e. ( SubGrp ` G ) -> ( ( ( 0g ` H ) ( +g ` G ) ( 0g ` H ) ) = ( 0g ` H ) <-> .0. = ( 0g ` H ) ) ) |
23 |
14 22
|
mpbid |
|- ( S e. ( SubGrp ` G ) -> .0. = ( 0g ` H ) ) |