Step |
Hyp |
Ref |
Expression |
1 |
|
subg0cl.i |
|- .0. = ( 0g ` G ) |
2 |
|
eqid |
|- ( G |`s S ) = ( G |`s S ) |
3 |
2
|
subggrp |
|- ( S e. ( SubGrp ` G ) -> ( G |`s S ) e. Grp ) |
4 |
|
eqid |
|- ( Base ` ( G |`s S ) ) = ( Base ` ( G |`s S ) ) |
5 |
|
eqid |
|- ( 0g ` ( G |`s S ) ) = ( 0g ` ( G |`s S ) ) |
6 |
4 5
|
grpidcl |
|- ( ( G |`s S ) e. Grp -> ( 0g ` ( G |`s S ) ) e. ( Base ` ( G |`s S ) ) ) |
7 |
3 6
|
syl |
|- ( S e. ( SubGrp ` G ) -> ( 0g ` ( G |`s S ) ) e. ( Base ` ( G |`s S ) ) ) |
8 |
2 1
|
subg0 |
|- ( S e. ( SubGrp ` G ) -> .0. = ( 0g ` ( G |`s S ) ) ) |
9 |
2
|
subgbas |
|- ( S e. ( SubGrp ` G ) -> S = ( Base ` ( G |`s S ) ) ) |
10 |
7 8 9
|
3eltr4d |
|- ( S e. ( SubGrp ` G ) -> .0. e. S ) |