| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgabl.h |
|- H = ( G |`s S ) |
| 2 |
1
|
subgbas |
|- ( S e. ( SubGrp ` G ) -> S = ( Base ` H ) ) |
| 3 |
2
|
adantl |
|- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> S = ( Base ` H ) ) |
| 4 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 5 |
1 4
|
ressplusg |
|- ( S e. ( SubGrp ` G ) -> ( +g ` G ) = ( +g ` H ) ) |
| 6 |
5
|
adantl |
|- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> ( +g ` G ) = ( +g ` H ) ) |
| 7 |
1
|
subggrp |
|- ( S e. ( SubGrp ` G ) -> H e. Grp ) |
| 8 |
7
|
adantl |
|- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> H e. Grp ) |
| 9 |
|
simp1l |
|- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ x e. S /\ y e. S ) -> G e. Abel ) |
| 10 |
|
simp1r |
|- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ x e. S /\ y e. S ) -> S e. ( SubGrp ` G ) ) |
| 11 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 12 |
11
|
subgss |
|- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
| 13 |
10 12
|
syl |
|- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ x e. S /\ y e. S ) -> S C_ ( Base ` G ) ) |
| 14 |
|
simp2 |
|- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ x e. S /\ y e. S ) -> x e. S ) |
| 15 |
13 14
|
sseldd |
|- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ x e. S /\ y e. S ) -> x e. ( Base ` G ) ) |
| 16 |
|
simp3 |
|- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ x e. S /\ y e. S ) -> y e. S ) |
| 17 |
13 16
|
sseldd |
|- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ x e. S /\ y e. S ) -> y e. ( Base ` G ) ) |
| 18 |
11 4
|
ablcom |
|- ( ( G e. Abel /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
| 19 |
9 15 17 18
|
syl3anc |
|- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ x e. S /\ y e. S ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
| 20 |
3 6 8 19
|
isabld |
|- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> H e. Abel ) |