Step |
Hyp |
Ref |
Expression |
1 |
|
subgabl.h |
|- H = ( G |`s S ) |
2 |
1
|
subgbas |
|- ( S e. ( SubGrp ` G ) -> S = ( Base ` H ) ) |
3 |
2
|
adantl |
|- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> S = ( Base ` H ) ) |
4 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
5 |
1 4
|
ressplusg |
|- ( S e. ( SubGrp ` G ) -> ( +g ` G ) = ( +g ` H ) ) |
6 |
5
|
adantl |
|- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> ( +g ` G ) = ( +g ` H ) ) |
7 |
1
|
subggrp |
|- ( S e. ( SubGrp ` G ) -> H e. Grp ) |
8 |
7
|
adantl |
|- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> H e. Grp ) |
9 |
|
simp1l |
|- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ x e. S /\ y e. S ) -> G e. Abel ) |
10 |
|
simp1r |
|- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ x e. S /\ y e. S ) -> S e. ( SubGrp ` G ) ) |
11 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
12 |
11
|
subgss |
|- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
13 |
10 12
|
syl |
|- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ x e. S /\ y e. S ) -> S C_ ( Base ` G ) ) |
14 |
|
simp2 |
|- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ x e. S /\ y e. S ) -> x e. S ) |
15 |
13 14
|
sseldd |
|- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ x e. S /\ y e. S ) -> x e. ( Base ` G ) ) |
16 |
|
simp3 |
|- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ x e. S /\ y e. S ) -> y e. S ) |
17 |
13 16
|
sseldd |
|- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ x e. S /\ y e. S ) -> y e. ( Base ` G ) ) |
18 |
11 4
|
ablcom |
|- ( ( G e. Abel /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
19 |
9 15 17 18
|
syl3anc |
|- ( ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) /\ x e. S /\ y e. S ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
20 |
3 6 8 19
|
isabld |
|- ( ( G e. Abel /\ S e. ( SubGrp ` G ) ) -> H e. Abel ) |