Step |
Hyp |
Ref |
Expression |
1 |
|
subgcl.p |
|- .+ = ( +g ` G ) |
2 |
|
eqid |
|- ( G |`s S ) = ( G |`s S ) |
3 |
2
|
subggrp |
|- ( S e. ( SubGrp ` G ) -> ( G |`s S ) e. Grp ) |
4 |
3
|
3ad2ant1 |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( G |`s S ) e. Grp ) |
5 |
|
simp2 |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> X e. S ) |
6 |
2
|
subgbas |
|- ( S e. ( SubGrp ` G ) -> S = ( Base ` ( G |`s S ) ) ) |
7 |
6
|
3ad2ant1 |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> S = ( Base ` ( G |`s S ) ) ) |
8 |
5 7
|
eleqtrd |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> X e. ( Base ` ( G |`s S ) ) ) |
9 |
|
simp3 |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> Y e. S ) |
10 |
9 7
|
eleqtrd |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> Y e. ( Base ` ( G |`s S ) ) ) |
11 |
|
eqid |
|- ( Base ` ( G |`s S ) ) = ( Base ` ( G |`s S ) ) |
12 |
|
eqid |
|- ( +g ` ( G |`s S ) ) = ( +g ` ( G |`s S ) ) |
13 |
11 12
|
grpcl |
|- ( ( ( G |`s S ) e. Grp /\ X e. ( Base ` ( G |`s S ) ) /\ Y e. ( Base ` ( G |`s S ) ) ) -> ( X ( +g ` ( G |`s S ) ) Y ) e. ( Base ` ( G |`s S ) ) ) |
14 |
4 8 10 13
|
syl3anc |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( X ( +g ` ( G |`s S ) ) Y ) e. ( Base ` ( G |`s S ) ) ) |
15 |
2 1
|
ressplusg |
|- ( S e. ( SubGrp ` G ) -> .+ = ( +g ` ( G |`s S ) ) ) |
16 |
15
|
3ad2ant1 |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> .+ = ( +g ` ( G |`s S ) ) ) |
17 |
16
|
oveqd |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( X .+ Y ) = ( X ( +g ` ( G |`s S ) ) Y ) ) |
18 |
14 17 7
|
3eltr4d |
|- ( ( S e. ( SubGrp ` G ) /\ X e. S /\ Y e. S ) -> ( X .+ Y ) e. S ) |