Step |
Hyp |
Ref |
Expression |
1 |
|
subgdisj.p |
|- .+ = ( +g ` G ) |
2 |
|
subgdisj.o |
|- .0. = ( 0g ` G ) |
3 |
|
subgdisj.z |
|- Z = ( Cntz ` G ) |
4 |
|
subgdisj.t |
|- ( ph -> T e. ( SubGrp ` G ) ) |
5 |
|
subgdisj.u |
|- ( ph -> U e. ( SubGrp ` G ) ) |
6 |
|
subgdisj.i |
|- ( ph -> ( T i^i U ) = { .0. } ) |
7 |
|
subgdisj.s |
|- ( ph -> T C_ ( Z ` U ) ) |
8 |
|
subgdisj.a |
|- ( ph -> A e. T ) |
9 |
|
subgdisj.c |
|- ( ph -> C e. T ) |
10 |
|
subgdisj.b |
|- ( ph -> B e. U ) |
11 |
|
subgdisj.d |
|- ( ph -> D e. U ) |
12 |
|
subgdisj.j |
|- ( ph -> ( A .+ B ) = ( C .+ D ) ) |
13 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
14 |
13
|
subgsubcl |
|- ( ( T e. ( SubGrp ` G ) /\ A e. T /\ C e. T ) -> ( A ( -g ` G ) C ) e. T ) |
15 |
4 8 9 14
|
syl3anc |
|- ( ph -> ( A ( -g ` G ) C ) e. T ) |
16 |
7 9
|
sseldd |
|- ( ph -> C e. ( Z ` U ) ) |
17 |
1 3
|
cntzi |
|- ( ( C e. ( Z ` U ) /\ B e. U ) -> ( C .+ B ) = ( B .+ C ) ) |
18 |
16 10 17
|
syl2anc |
|- ( ph -> ( C .+ B ) = ( B .+ C ) ) |
19 |
12 18
|
oveq12d |
|- ( ph -> ( ( A .+ B ) ( -g ` G ) ( C .+ B ) ) = ( ( C .+ D ) ( -g ` G ) ( B .+ C ) ) ) |
20 |
|
subgrcl |
|- ( T e. ( SubGrp ` G ) -> G e. Grp ) |
21 |
4 20
|
syl |
|- ( ph -> G e. Grp ) |
22 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
23 |
22
|
subgss |
|- ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) ) |
24 |
4 23
|
syl |
|- ( ph -> T C_ ( Base ` G ) ) |
25 |
24 8
|
sseldd |
|- ( ph -> A e. ( Base ` G ) ) |
26 |
22
|
subgss |
|- ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) ) |
27 |
5 26
|
syl |
|- ( ph -> U C_ ( Base ` G ) ) |
28 |
27 10
|
sseldd |
|- ( ph -> B e. ( Base ` G ) ) |
29 |
22 1
|
grpcl |
|- ( ( G e. Grp /\ A e. ( Base ` G ) /\ B e. ( Base ` G ) ) -> ( A .+ B ) e. ( Base ` G ) ) |
30 |
21 25 28 29
|
syl3anc |
|- ( ph -> ( A .+ B ) e. ( Base ` G ) ) |
31 |
24 9
|
sseldd |
|- ( ph -> C e. ( Base ` G ) ) |
32 |
22 1 13
|
grpsubsub4 |
|- ( ( G e. Grp /\ ( ( A .+ B ) e. ( Base ` G ) /\ B e. ( Base ` G ) /\ C e. ( Base ` G ) ) ) -> ( ( ( A .+ B ) ( -g ` G ) B ) ( -g ` G ) C ) = ( ( A .+ B ) ( -g ` G ) ( C .+ B ) ) ) |
33 |
21 30 28 31 32
|
syl13anc |
|- ( ph -> ( ( ( A .+ B ) ( -g ` G ) B ) ( -g ` G ) C ) = ( ( A .+ B ) ( -g ` G ) ( C .+ B ) ) ) |
34 |
12 30
|
eqeltrrd |
|- ( ph -> ( C .+ D ) e. ( Base ` G ) ) |
35 |
22 1 13
|
grpsubsub4 |
|- ( ( G e. Grp /\ ( ( C .+ D ) e. ( Base ` G ) /\ C e. ( Base ` G ) /\ B e. ( Base ` G ) ) ) -> ( ( ( C .+ D ) ( -g ` G ) C ) ( -g ` G ) B ) = ( ( C .+ D ) ( -g ` G ) ( B .+ C ) ) ) |
36 |
21 34 31 28 35
|
syl13anc |
|- ( ph -> ( ( ( C .+ D ) ( -g ` G ) C ) ( -g ` G ) B ) = ( ( C .+ D ) ( -g ` G ) ( B .+ C ) ) ) |
37 |
19 33 36
|
3eqtr4d |
|- ( ph -> ( ( ( A .+ B ) ( -g ` G ) B ) ( -g ` G ) C ) = ( ( ( C .+ D ) ( -g ` G ) C ) ( -g ` G ) B ) ) |
38 |
22 1 13
|
grppncan |
|- ( ( G e. Grp /\ A e. ( Base ` G ) /\ B e. ( Base ` G ) ) -> ( ( A .+ B ) ( -g ` G ) B ) = A ) |
39 |
21 25 28 38
|
syl3anc |
|- ( ph -> ( ( A .+ B ) ( -g ` G ) B ) = A ) |
40 |
39
|
oveq1d |
|- ( ph -> ( ( ( A .+ B ) ( -g ` G ) B ) ( -g ` G ) C ) = ( A ( -g ` G ) C ) ) |
41 |
1 3
|
cntzi |
|- ( ( C e. ( Z ` U ) /\ D e. U ) -> ( C .+ D ) = ( D .+ C ) ) |
42 |
16 11 41
|
syl2anc |
|- ( ph -> ( C .+ D ) = ( D .+ C ) ) |
43 |
42
|
oveq1d |
|- ( ph -> ( ( C .+ D ) ( -g ` G ) C ) = ( ( D .+ C ) ( -g ` G ) C ) ) |
44 |
27 11
|
sseldd |
|- ( ph -> D e. ( Base ` G ) ) |
45 |
22 1 13
|
grppncan |
|- ( ( G e. Grp /\ D e. ( Base ` G ) /\ C e. ( Base ` G ) ) -> ( ( D .+ C ) ( -g ` G ) C ) = D ) |
46 |
21 44 31 45
|
syl3anc |
|- ( ph -> ( ( D .+ C ) ( -g ` G ) C ) = D ) |
47 |
43 46
|
eqtrd |
|- ( ph -> ( ( C .+ D ) ( -g ` G ) C ) = D ) |
48 |
47
|
oveq1d |
|- ( ph -> ( ( ( C .+ D ) ( -g ` G ) C ) ( -g ` G ) B ) = ( D ( -g ` G ) B ) ) |
49 |
37 40 48
|
3eqtr3d |
|- ( ph -> ( A ( -g ` G ) C ) = ( D ( -g ` G ) B ) ) |
50 |
13
|
subgsubcl |
|- ( ( U e. ( SubGrp ` G ) /\ D e. U /\ B e. U ) -> ( D ( -g ` G ) B ) e. U ) |
51 |
5 11 10 50
|
syl3anc |
|- ( ph -> ( D ( -g ` G ) B ) e. U ) |
52 |
49 51
|
eqeltrd |
|- ( ph -> ( A ( -g ` G ) C ) e. U ) |
53 |
15 52
|
elind |
|- ( ph -> ( A ( -g ` G ) C ) e. ( T i^i U ) ) |
54 |
53 6
|
eleqtrd |
|- ( ph -> ( A ( -g ` G ) C ) e. { .0. } ) |
55 |
|
elsni |
|- ( ( A ( -g ` G ) C ) e. { .0. } -> ( A ( -g ` G ) C ) = .0. ) |
56 |
54 55
|
syl |
|- ( ph -> ( A ( -g ` G ) C ) = .0. ) |
57 |
22 2 13
|
grpsubeq0 |
|- ( ( G e. Grp /\ A e. ( Base ` G ) /\ C e. ( Base ` G ) ) -> ( ( A ( -g ` G ) C ) = .0. <-> A = C ) ) |
58 |
21 25 31 57
|
syl3anc |
|- ( ph -> ( ( A ( -g ` G ) C ) = .0. <-> A = C ) ) |
59 |
56 58
|
mpbid |
|- ( ph -> A = C ) |