| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgdisj.p |
|- .+ = ( +g ` G ) |
| 2 |
|
subgdisj.o |
|- .0. = ( 0g ` G ) |
| 3 |
|
subgdisj.z |
|- Z = ( Cntz ` G ) |
| 4 |
|
subgdisj.t |
|- ( ph -> T e. ( SubGrp ` G ) ) |
| 5 |
|
subgdisj.u |
|- ( ph -> U e. ( SubGrp ` G ) ) |
| 6 |
|
subgdisj.i |
|- ( ph -> ( T i^i U ) = { .0. } ) |
| 7 |
|
subgdisj.s |
|- ( ph -> T C_ ( Z ` U ) ) |
| 8 |
|
subgdisj.a |
|- ( ph -> A e. T ) |
| 9 |
|
subgdisj.c |
|- ( ph -> C e. T ) |
| 10 |
|
subgdisj.b |
|- ( ph -> B e. U ) |
| 11 |
|
subgdisj.d |
|- ( ph -> D e. U ) |
| 12 |
|
subgdisj.j |
|- ( ph -> ( A .+ B ) = ( C .+ D ) ) |
| 13 |
|
incom |
|- ( T i^i U ) = ( U i^i T ) |
| 14 |
13 6
|
eqtr3id |
|- ( ph -> ( U i^i T ) = { .0. } ) |
| 15 |
3 4 5 7
|
cntzrecd |
|- ( ph -> U C_ ( Z ` T ) ) |
| 16 |
7 8
|
sseldd |
|- ( ph -> A e. ( Z ` U ) ) |
| 17 |
1 3
|
cntzi |
|- ( ( A e. ( Z ` U ) /\ B e. U ) -> ( A .+ B ) = ( B .+ A ) ) |
| 18 |
16 10 17
|
syl2anc |
|- ( ph -> ( A .+ B ) = ( B .+ A ) ) |
| 19 |
7 9
|
sseldd |
|- ( ph -> C e. ( Z ` U ) ) |
| 20 |
1 3
|
cntzi |
|- ( ( C e. ( Z ` U ) /\ D e. U ) -> ( C .+ D ) = ( D .+ C ) ) |
| 21 |
19 11 20
|
syl2anc |
|- ( ph -> ( C .+ D ) = ( D .+ C ) ) |
| 22 |
12 18 21
|
3eqtr3d |
|- ( ph -> ( B .+ A ) = ( D .+ C ) ) |
| 23 |
1 2 3 5 4 14 15 10 11 8 9 22
|
subgdisj1 |
|- ( ph -> B = D ) |