Step |
Hyp |
Ref |
Expression |
1 |
|
subgdisj.p |
|- .+ = ( +g ` G ) |
2 |
|
subgdisj.o |
|- .0. = ( 0g ` G ) |
3 |
|
subgdisj.z |
|- Z = ( Cntz ` G ) |
4 |
|
subgdisj.t |
|- ( ph -> T e. ( SubGrp ` G ) ) |
5 |
|
subgdisj.u |
|- ( ph -> U e. ( SubGrp ` G ) ) |
6 |
|
subgdisj.i |
|- ( ph -> ( T i^i U ) = { .0. } ) |
7 |
|
subgdisj.s |
|- ( ph -> T C_ ( Z ` U ) ) |
8 |
|
subgdisj.a |
|- ( ph -> A e. T ) |
9 |
|
subgdisj.c |
|- ( ph -> C e. T ) |
10 |
|
subgdisj.b |
|- ( ph -> B e. U ) |
11 |
|
subgdisj.d |
|- ( ph -> D e. U ) |
12 |
|
subgdisj.j |
|- ( ph -> ( A .+ B ) = ( C .+ D ) ) |
13 |
|
incom |
|- ( T i^i U ) = ( U i^i T ) |
14 |
13 6
|
eqtr3id |
|- ( ph -> ( U i^i T ) = { .0. } ) |
15 |
3 4 5 7
|
cntzrecd |
|- ( ph -> U C_ ( Z ` T ) ) |
16 |
7 8
|
sseldd |
|- ( ph -> A e. ( Z ` U ) ) |
17 |
1 3
|
cntzi |
|- ( ( A e. ( Z ` U ) /\ B e. U ) -> ( A .+ B ) = ( B .+ A ) ) |
18 |
16 10 17
|
syl2anc |
|- ( ph -> ( A .+ B ) = ( B .+ A ) ) |
19 |
7 9
|
sseldd |
|- ( ph -> C e. ( Z ` U ) ) |
20 |
1 3
|
cntzi |
|- ( ( C e. ( Z ` U ) /\ D e. U ) -> ( C .+ D ) = ( D .+ C ) ) |
21 |
19 11 20
|
syl2anc |
|- ( ph -> ( C .+ D ) = ( D .+ C ) ) |
22 |
12 18 21
|
3eqtr3d |
|- ( ph -> ( B .+ A ) = ( D .+ C ) ) |
23 |
1 2 3 5 4 14 15 10 11 8 9 22
|
subgdisj1 |
|- ( ph -> B = D ) |