| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgdisj.p |
|- .+ = ( +g ` G ) |
| 2 |
|
subgdisj.o |
|- .0. = ( 0g ` G ) |
| 3 |
|
subgdisj.z |
|- Z = ( Cntz ` G ) |
| 4 |
|
subgdisj.t |
|- ( ph -> T e. ( SubGrp ` G ) ) |
| 5 |
|
subgdisj.u |
|- ( ph -> U e. ( SubGrp ` G ) ) |
| 6 |
|
subgdisj.i |
|- ( ph -> ( T i^i U ) = { .0. } ) |
| 7 |
|
subgdisj.s |
|- ( ph -> T C_ ( Z ` U ) ) |
| 8 |
|
subgdisj.a |
|- ( ph -> A e. T ) |
| 9 |
|
subgdisj.c |
|- ( ph -> C e. T ) |
| 10 |
|
subgdisj.b |
|- ( ph -> B e. U ) |
| 11 |
|
subgdisj.d |
|- ( ph -> D e. U ) |
| 12 |
4
|
adantr |
|- ( ( ph /\ ( A .+ B ) = ( C .+ D ) ) -> T e. ( SubGrp ` G ) ) |
| 13 |
5
|
adantr |
|- ( ( ph /\ ( A .+ B ) = ( C .+ D ) ) -> U e. ( SubGrp ` G ) ) |
| 14 |
6
|
adantr |
|- ( ( ph /\ ( A .+ B ) = ( C .+ D ) ) -> ( T i^i U ) = { .0. } ) |
| 15 |
7
|
adantr |
|- ( ( ph /\ ( A .+ B ) = ( C .+ D ) ) -> T C_ ( Z ` U ) ) |
| 16 |
8
|
adantr |
|- ( ( ph /\ ( A .+ B ) = ( C .+ D ) ) -> A e. T ) |
| 17 |
9
|
adantr |
|- ( ( ph /\ ( A .+ B ) = ( C .+ D ) ) -> C e. T ) |
| 18 |
10
|
adantr |
|- ( ( ph /\ ( A .+ B ) = ( C .+ D ) ) -> B e. U ) |
| 19 |
11
|
adantr |
|- ( ( ph /\ ( A .+ B ) = ( C .+ D ) ) -> D e. U ) |
| 20 |
|
simpr |
|- ( ( ph /\ ( A .+ B ) = ( C .+ D ) ) -> ( A .+ B ) = ( C .+ D ) ) |
| 21 |
1 2 3 12 13 14 15 16 17 18 19 20
|
subgdisj1 |
|- ( ( ph /\ ( A .+ B ) = ( C .+ D ) ) -> A = C ) |
| 22 |
1 2 3 12 13 14 15 16 17 18 19 20
|
subgdisj2 |
|- ( ( ph /\ ( A .+ B ) = ( C .+ D ) ) -> B = D ) |
| 23 |
21 22
|
jca |
|- ( ( ph /\ ( A .+ B ) = ( C .+ D ) ) -> ( A = C /\ B = D ) ) |
| 24 |
23
|
ex |
|- ( ph -> ( ( A .+ B ) = ( C .+ D ) -> ( A = C /\ B = D ) ) ) |
| 25 |
|
oveq12 |
|- ( ( A = C /\ B = D ) -> ( A .+ B ) = ( C .+ D ) ) |
| 26 |
24 25
|
impbid1 |
|- ( ph -> ( ( A .+ B ) = ( C .+ D ) <-> ( A = C /\ B = D ) ) ) |